
First, we have a probabilistic model P (X,Z|θ), where X is observed data, Z is unobserved data, θ is
the parameter we would like to learn from data.

We want to get the maximum likelihood estimate for θ, this should be done by maximizing the
likelihood P (X,Z|θ), unfortunately we don’t know values for Z, so this is impossible.

Then we find that we can calculate P (X|θ) by summing out Z, P (X|θ) =
∑
Z P (X,Z|θ). So the

problem becomes how to find a θ that maximizes P (X|θ).
We are going to maximize P (X|θ) iteratively. At every iteration, we begin with a θold. We hope we

can find a θnew so that P (X|θnew) > P (X|θold).
To do this, we need to prove an important inequality, that for any θ, we have

logP (X|θ) = log
∑
Z

P (X,Z|θ)

= log
∑
Z

P (Z|X, θold)
P (X,Z|θ)
P (Z|X, θold)

≥
∑
Z

P (Z|X, θold) log
P (X,Z|θ)
P (Z|X, θold)

= EZ|X,θold log
P (X,Z|θ)
P (Z|X, θold)

= EZ|X,θold logP (X,Z|θ)− EZ|X,θold logP (Z|X, θold) = Q(θ) .

So we have proved that for any θ, logP (X|θ) ≥ Q(θ).
We can also prove that Q(θold) = logP (X|θold).

Q(θold) = EZ|X,θold logP (X,Z|θold)− EZ|X,θold logP (Z|X, θold)

= EZ|X,θold log
P (X,Z|θold)
P (Z|X, θold)

= EZ|X,θold log
P (X,Z, θold)/P (θold)

P (X,Z, θold)/P (X, θold)

= EZ|X,θold log
P (X, θold)

P (θold)
= EZ|X,θold logP (X|θold) = logP (X|θold) .

Then we define θnew to be
θnew = arg max

θ
Q(θ),

so we know that for any θ, Q(θnew) ≥ Q(θ).
As a summary, we have proved that

• for any θ, logP (X|θ) ≥ Q(θ)

• for any θ, Q(θnew) ≥ Q(θ), where θnew = arg maxθ Q(θ)

• Q(θold) = logP (X|θold)

Therefore, logP (X|θnew) ≥ Q(θnew) ≥ Q(θold) = logP (X|θold). Note that when P (X|θnew) = P (X|θold)
the algorithm stops, so in other cases, P (X|θnew) > P (X|θold).

As a final remark, since EZ|X,θold logP (Z|X, θold) in Q(θ) is a constant, in practice we define θnew as

θnew = arg max
θ

EZ|X,θold logP (X,Z|θ) .
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