COMP90051

Workshop Week 12

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

About the Workshops

17 sessions in total

1 Tue 12:00-13:00 AH211
J Tue 12:00-13:00 AH108 *
] Tue 13:00-14:00 AH210
1 Tue 16:15-17:15 AH109
JTue 17:15-18:15 AH236 *
J Tue 18:15-19:15 AH236 *
J Fri114:15-15:15 AH211

About the Workshops

I Homepage
1 https://trevorcohn.github.10/comp90051-2017/workshops

1 Solutions will be released on next Friday (a week later).

https://trevorcohn.github.io/comp90051-2017/workshops

Syllabus

1 |Introduction; Probabilistic models;
Probability theory Parameter fitting

2 | Linear regression; _ogistic regression;
ntroduction to regularization Basis expansion

3 | Optimization; Regularization Perceptron

4 | Backpropagation CNNs; Auto-encoders

5 |Hard-margin SVMs Soft-margin SVMs

6 | Kernel methods Ensemble Learning

7 | Clustering EM algorithm

8 |Principal component analysis; Manifold Learning;
Multidimensional Scaling Spectral clustering

O |Bayesian inference (uncertainty, |Bayesian inference
updating) (conjugate priors)

10 PGMs, fundamentals PGMs, independence

11 | PGMs, inference PGMs, EM algorithm

12 PGMs, HMMs & message passing Subject review

Outline

JReview the lecture, background knowledge, etc.
) Elimination algorithm

) Sampling method
1 EM algorithm

Statistical Machine Learning (S2 2017) Deck 22

Nuclear power plant

e Alarm sounds: meltdown?!

Pr(HT, AS=t)
Pr(AS=t)

YFG HG, Fa Pr(AS=t,FA HG, FG, HT)

-1 Pr(AS=t, FA,HR, FG, HT')

» Pr(HT|AS =t) =

ZFG, HG, FA H Alarm sounds

e Numerator (denominator similar)

expanding out sums, joint summing once over 2° table

— Z Z Pr(HT) Pr(HG|HT, FG) Pr(FG) Pr(AS = t|FA, HG) Pr(FA)
FG HG FA

distributing the sums as far down as possible summing over several smaller tables

=pr(HT)z Pr(FG)E Pr(HG|HT,FG) > Pr(FA)Pr(AS = t|FA, HG)
FG HG FA

To calculate P(HT|AS = 1) ()

JJoint @
P(AS,FA, HG, HT, FG)

= P(AS|FA,HG)P(FA)P(HG|HT,FG)P(HT)P(FG)

JStep 1. P(HT|AS = 1) « P(AS = 1,HT)
Step 2. P(AS = 1,HT) = ¥y wera P(AS = 1, FA, HG, HT, FG)

1 Step 3. Normalize P(AS = 1,HT) = P(HT|AS = 1)

IP(AS = 1,HT) has two numbers
A P(AS = 1,HT = 0) and P(AS = 1, HT = 1)

! can be calculated together

I We will first see a Naive way to calculate them

ONO
PEEORO

Define some tables

table FG = np.asarray([©0.1, 0.9
table HT = np.asarray([©.2, 0.8]) €« P(HT)
table FA = np.asarray([©0.3, 0.7]) €& P(FA) @

table HG HT _FG = np. empty((z 2, 2)) < P(HG|HT,FG)
table HG HT FG[:, 6, 0] = [0.35, 0.65]
table HG HT FG[:, 0, 1] = [©0.25, 0.75]
table HG HT FG[:, 1, 0] = [©0.15, 0.85]
table HG HT FG[:, 1, 1] = [©0.05, 0.95
table AS FA HG = np. empty((z 2, 2)) < P(AS|FA HG)
table AS FA HG[:, 6, 0] = [0.45, 0.55]
table AS FA HG[:, 0, 1] = [0.55, 0.45]
table AS FA HG[:, 1, 0] = [0.65, 0.35]
table AS FA HG[:, 1, 1] = [0.75, 0.25]

P(AS = 1,HT) = Yy nora P(AS = 1,FA, HG, HT, FG) @ @

() ()

prob HT = np.zeros(2) e
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [©, 1]:
for FA in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG _HT FG[HG, HT, FG] *
table FA[FA] *
table AS _FA HG[AS, FA, HG]

print(prob_ HT)

[©.0672 ©.2528]

m AS = table AS FA HG[1, :, :]
prob HT = np.zeros(2)
for HT in [©, 1]:
for FG in [0, 1]:
for HG in [©, 1]:
for FA in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
table HG _HT FG[HG, HT, FG] *
table FA[FA] *
m_AS[FA, HG]

print(prob_HT)

[©.0672 ©.2528]

Any ldeas to reduce #multiplications?

m AS = table AS FA HG[1, :, :]

prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
for FA in [0, 1]:

prob HT[HT] += (table FG[FG] * table HT[HT] *
table HG HT FG[HG, HT, FG] *

table FA[FA] * m_AS[FA, HG]
)

print(prob_ HT)

[©.0672 0.2528]

Loop unrolling

m_AS = table AS FA HG[1, :,
prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
prob HT[HT] +=

prob HT[HT] +=

print(prob_ HT)

[©.0672 0.2528]

:]

(ta
ta
ta

(ta
ta
ta

ple FG[FG] * table HT[HT] *
ple HG HT FG[HG, HT, FG] *

ple FA[O] * m AS[O, HG] <

ple FG[FG] * table HT[HT] *
ple HG HT FG[HG, HT, FG] *

ple FA[1] * m_AS[1, HG] <

Rearranging the parentheses

m AS = table AS FA HG[1, :, :]
prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [©, 1]:

prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG HT FG[HG, HT, FG
(table FA[O] * m AS[©, HG]

table FA[1] * m AS[1, HG]
)

)
print(prob_ HT)

[©.0672 ©.2528]

X
+

é
é

Define a message function for FA

m AS = table AS FA HG[1, :, :]

def m FA(HG): return (table FA[©] * m_AS[©, HG] +
table FA[1] * m_AS[1, HG])

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
table HG HT FG[HG, HT, FG] *

m_FA(HG)

)

print(prob_ HT)

[©.0672 ©.2528]

Better to precompute m_FA

m AS = table AS FA HG[1, :, :]

m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG HT FG[HG, HT, FG] *
m_FA[HG]
)

print(prob_ HT)

[©.0672 ©.2528]

FA 1s removed, then remove HG

table AS FA HG[1, :, :]

table FA[©] * m AS[O, :] + table FA[1] * m AS[1, :]

m_AS
m_FA

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
table HG HT FG[HG, HT, FG] *

m_FA[HG]

)

print(prob HT)

[©.0672 ©.2528]

Loop unrolling, rearranging the parentheses

m_AS
m_FA

table AS FA HG[1, :, :]

table FA[©] * m AS[O, :] + table FA[1] * m AS[1, :]

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
(table HG HT FG[@©, HT, FG] * m_FA[0] +
table HG HT FG[1, HT, FG] * m FA[1]
)
)

print(prob_ HT)

[©.0672 ©.2528]

Define a message function for HG

m AS = table AS FA HG[1, :, :]
m FA = table FA[O] * m _AS[O, :] + table FA[1] * m _AS[1, :]

def m HG(HT, FG): return (table HG HT FG[©, HT, FG] * m FA[O] +
table HG HT FG[1, HT, FG] * m_FA[1])

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
m_HG(HT, FG)

)
print(prob_HT)

[©.0672 0©.2528]

Aqgain, better to precompute m HG

m AS = table AS FA HG[1, :, :]
m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]
m HG = (table HG HT FG[©O, :, :] * m _FA[O] +

table HG HT FG[1, :, :] * m_FA[1])
prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
m_HG[HT, FG]

)
print(prob_ HT)

[©.0672 ©.2528]

Then FG, directly define the message func

m AS = table AS FA HG[1, :, :]
m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]
m HG = (table HG HT FG[©9, :, :] * m _FA[O] +

table HG HT FG[1, :, :] * m _FA[1])

def m FG(HT): return (table FG[©] * m HG[HT, 0] +
table FG[1] * m HG[HT, 1])

prob HT = np.zeros(2)
for HT in [6, 1]:
prob HT[HT] += m_FG(HT) * table HT[HT]

print(prob_ HT)

[©.0672 ©0.2528]

Finally

m AS = table AS FA HG[1, :, :]

m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]

m HG = (table HG HT FG[O, :, :] * m _FA[O] +
table HG HT FG[1, :, :] * m _FA[1])
m FG = table FG[O] * m HG[:, ©] + table FG[1] * m HG[:, 1]

prob HT = m_FG * table HT

print(prob HT)

[0.0672 ©0.2528]

Finally (how many multiplications?)

m AS = table AS FA HG[1, :, :] ©

m FA = table FA[O] * m _AS[0O, :] + table FA[1] * m _AS[1, :]
2 2

m HG = (table HG HT FG[©, :, :] * m _FA[©] + 4
table HG HT FG[1, :, :] * m_FA[1]) 4
m FG = table FG[O] * m HG[:, 0] + table FG[1] * m HG[:, 1]
2 2
prob HT = m_FG * table HT
2
print(prob HT) in total 2*2 + 4*2 + 2*2 + 2 = 18

[©.0672 0.2528]

Nalve way (how many multiplications?)

AS = 1

prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
for FA in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG _HT FG[HG, HT, FG] *

table FA[FA] *
table AS _FA HG[AS, FA, HG]
) 4

print(prob HT) in total 4 * 16 = 64

[©.0672 0.2528]

What we have done mathematically?

m AS = table AS FA HG[1, :, :]

mys(FA,HG) = P(AS = 1|FA,HG)
m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]

Mg (HG) = Z P(FA)Ym,<(FA, HG)
FA

m HG

(table HG HT FG[@, :, :] * m _FA[O] +
table HG HT FG[1, :, :] * m_FA[1])

My (HT, FG) = 2 P(HG|HT, FG)mp,(HG)
HG
m FG = table FG[O] * m HG[:, 0] + table FG[1] * m HG[:, 1]
Mg (HT) = 2 P(FG)my.(HT, FG)
FG

prob HT = m_FG * table HT
P(AS =1,HT) = mp;(HT)P(HT)

Statistical Machine Learning (S2 2017) Deck 22

Nuclear power plant (cont.)

= Pr(HT) Y5 Pr(FG) Xy Pr(HG|HT, FG) Y., Pr(FA) Pr(AS = t|FA, HG) @ @
eliminate AS: since AS observed, really a no-op @

= Pr(HT) Xpg Pr(FG) Xy Pr(HG|HT,FG) Y. p o Pr(FA) mys (FA, HG) @ @
eliminate FA: multiplying 1x2 by 2x2 @ @

= Pr(HT) Y5 Pr(FG) Yy Pr(HG|HT,FG) mp,(HG) @ @

Multiplication
eliminate HG: multiplying 2x2x2 by 2x1 @ of tables. followed

by summing, is actually

matrix multiplication
— Pr(HT) ¥ g Pr(FG) myg (HT, FG) ;

eliminate FG: multiplying 1x2 by 2x2 FA HG
f t
He)= Tt x
= Pr(HT) mg;(HT) @ T 0.60.4 F f 1.0/ 0
A t |0.80.2F

But why the order FA - HG — FG — HT?

m_AS|= table AS FA HG[1, :, :] ©

m_FA|l= table FA[O] * m_AS[O, :] + table FA[1] * m _AS[1, :]
2 2

m_HG|= (table HG HT FG[©, :, :] * m _FA[@] + 4
table HG HT FG[1, :, :] * m_FA[1]) 4
m_FG|= table FG[O] * m HG[:, 0] + table FG[1] * m HG[:, 1]
2 2
probYHT = m_FG * table HT
2
print(prob HT) in total 2*2 + 4*2 + 2*2 + 2 = 18

[©.0672 0.2528]

Try to eliminate HG after AS ()

m AS = table AS FA HG[1, :, :] Q @

prob HT = np.zeros(2) @
for HT in [6, 1]:
for FG in [0, 1]:
for FA in [0, 1]:
for HG in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG _HT FG[HG, HT, FG] *
table FA[FA] *
m_AS[FA, HG]
)

print(prob_ HT)

[©.0672 ©.2528]

Try to eliminate HG after AS

m AS = table AS FA HG[1, :, :]
def m HG(FA, HT, FG): already 8*2 = 16 multiplications
return (m_AS[FA, 0] * table HG HT FG[©, HT, FG] +
m_AS[FA, 1] * table HG HT FG[1, HT, FG])
because HG connected to 3 other nodes
prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for FA in [6, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
table FA[FA] *
m_HG(FA, HT, FG)

)

print(prob_ HT)

[©.0672 ©.2528]

A summary for elimination algorithms

1 An efficient way to marginalize random variables

1 The order of elimination affects the efficiency

-1 Removing a node with many children and parents results
1n very large clique (message matrix)

) Time complexity exponential in the largest clique

1By the way, what 1s the reconstructed graph?

Statistical Machine Learning (S2 2017) Deck 22

G P P00 o

PGM aftef succegsive eliminations Jfreconstructed” graph
From process called
moralisation

e Put them together > the reconstructed graph

31

Statistical Machine Learning (52 2017) Deck 22

Probabilistic inference by simulation

e Exact probabilistic inference can be expensive/impossible
 Can we approximate numerically?

e |dea: sampling methods
* Cheaply sample from desired distribution
* Approximate distribution by histogram of samples

32

A summary for sampling methods

I If we get samples, we can
Juse them to calculate expectations (approximately)

) approximate distributions by histogram of samples

I Useful when exact inference 1s expensive or impossible

1 There are many methods can sample from unnormalized
distributions

) Very useful because normalization is the main challenge
for Bayesian inference

A summary for EM algorithm

1 Designed for MLE when there are latent variables
1 The joint P(X,Z|w), X observed, Z unobserved, w paras

J MLE for w: maxlog P(X|w) =log)., P(X, Z|w)
w

1 Due to the marginalization for Z, P(X|w) 1s complicated

J Gradients are often difficult to calculate

1 EM can deal with P(X|w) by
 E-step: estimate P(Z|X,w)

1 M-step: MLE for w using P(Z|X,w), max Ezx ,,[log P(X, Z|w)]
w
1 Beneficial because P(X, Z|w) can be factorized

) Sensitive to initialization, may converge to different results

Tutor Feedback

1 Search for “casmas” casmas 0

All Images Maps Videos Shopping More Settings

About 110,000 results (0.40 seconds)

CaSMasS - University of Melbourne

1 Tutor feedback Ma$ - University of Melbo
Welcome to CaSMaS. CaSMas is the casual staff management system for the Department of

< C' @ Secure | https://apps.eng.unimelb.edu.au/casmas/ l Y versity of Melbourne.

Fag
CaSMasS Help. FAQ. What are the
important dates | need to know?

Melbourne School of Engineering

CaSMaS

'HE UNIVERSITY OF Tutor Feedback | Melbourne School

MELBOURNE

of ... Quality of Tutor ...

Register Account Reset Password Bugreport Tutor Feedback

-
-
——’
-

Welcome to CaSMa3, - === =
e

1 COMP90051 - select a class 2 5:15pm or 6:16pm > ...

Q

Tools

Tutor Feedback | Melbourne ...

1 Good luck on your exams!

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

	Workshop Week 12
	About the Workshops
	About the Workshops
	Syllabus
	Outline
	Nuclear power plant
	To calculate 𝑃 𝐻𝑇 𝐴𝑆=1
	Slide Number 8
	Define some tables
	𝑃 𝐴𝑆=1,𝐻𝑇 = 𝐹𝐺,𝐻𝐺,𝐹𝐴 𝑃 𝐴𝑆=1,𝐹𝐴,𝐻𝐺,𝐻𝑇,𝐹𝐺 �
	Slide Number 11
	Any ideas to reduce #multiplications?
	Loop unrolling
	Rearranging the parentheses
	Define a message function for 𝐹𝐴
	Better to precompute m_FA
	𝐹𝐴 is removed, then remove 𝐻𝐺
	Loop unrolling, rearranging the parentheses
	Define a message function for 𝐻𝐺
	Again, better to precompute m_HG
	Then 𝐹𝐺, directly define the message func
	Finally
	Finally (how many multiplications?)
	Naive way (how many multiplications?)
	What we have done mathematically?
	Nuclear power plant (cont.)
	But why the order 𝐹𝐴→𝐻𝐺→𝐹𝐺→𝐻𝑇?
	Try to eliminate 𝐻𝐺 after 𝐴𝑆
	Try to eliminate 𝐻𝐺 after 𝐴𝑆
	A summary for elimination algorithms
	Slide Number 31
	Probabilistic inference by simulation
	A summary for sampling methods
	A summary for EM algorithm
	Tutor Feedback
	Slide Number 36

