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About the Workshops

17 sessions in total

1 Tue 12:00-13:00 AH211
J Tue 12:00-13:00 AH108 *
] Tue 13:00-14:00 AH210
1 Tue 16:15-17:15 AH109
JTue 17:15-18:15 AH236 *
J Tue 18:15-19:15 AH236 *
J Fri114:15-15:15 AH211



About the Workshops

I Homepage
1 https://trevorcohn.github.10/comp90051-2017/workshops

1 Solutions will be released on next Friday (a week later).


https://trevorcohn.github.io/comp90051-2017/workshops

Syllabus

1 |Introduction; Probabilistic models;
Probability theory Parameter fitting

2 | Linear regression; _ogistic regression;
ntroduction to regularization Basis expansion

3 | Optimization; Regularization Perceptron

4 | Backpropagation CNNs; Auto-encoders

5 |Hard-margin SVMs Soft-margin SVMs

6 | Kernel methods Ensemble Learning

7 | Clustering EM algorithm

8 |Principal component analysis; Manifold Learning;
Multidimensional Scaling Spectral clustering

O |Bayesian inference (uncertainty, |Bayesian inference
updating) (conjugate priors)

10 PGMs, fundamentals PGMs, independence

11 | PGMs, inference PGMs, EM algorithm

12 PGMs, HMMs & message passing Subject review




Outline

JReview the lecture, background knowledge, etc.
) Elimination algorithm

) Sampling method
1 EM algorithm



Statistical Machine Learning (S2 2017) Deck 22

Nuclear power plant

e Alarm sounds: meltdown?!

Pr(HT, AS=t)
Pr(AS=t)

YFG HG, Fa Pr(AS=t,FA HG, FG, HT)

-1 Pr(AS=t, FA,HR, FG, HT')

» Pr(HT|AS =t) =

ZFG, HG, FA H Alarm sounds

e Numerator (denominator similar)

expanding out sums, joint summing once over 2° table

— Z Z Pr(HT) Pr(HG|HT, FG) Pr(FG) Pr(AS = t|FA, HG) Pr(FA)
FG HG FA

distributing the sums as far down as possible summing over several smaller tables

=pr(HT)z Pr(FG)E Pr(HG|HT,FG) > Pr(FA)Pr(AS = t|FA, HG)
FG HG FA



To calculate P(HT|AS = 1) ()

JJoint @
P(AS,FA, HG, HT, FG)

= P(AS|FA,HG)P(FA)P(HG|HT,FG)P(HT)P(FG)

JStep 1. P(HT|AS = 1) « P(AS = 1,HT)
Step 2. P(AS = 1,HT) = ¥y wera P(AS = 1, FA, HG, HT, FG)

1 Step 3. Normalize P(AS = 1,HT) = P(HT|AS = 1)



IP(AS = 1,HT) has two numbers
A P(AS = 1,HT = 0) and P(AS = 1, HT = 1)

! can be calculated together

I We will first see a Naive way to calculate them



ONO
PEEORO

Define some tables

table FG = np.asarray([©0.1, 0.9
table HT = np.asarray([©.2, 0.8]) €« P(HT)
table FA = np.asarray([©0.3, 0.7]) €& P(FA) @

table HG HT _FG = np. empty((z 2, 2)) < P(HG|HT,FG)
table HG HT FG[:, 6, 0] = [0.35, 0.65]
table HG HT FG[:, 0, 1] = [©0.25, 0.75]
table HG HT FG[:, 1, 0] = [©0.15, 0.85]
table HG HT FG[:, 1, 1] = [©0.05, 0.95
table AS FA HG = np. empty((z 2, 2)) < P(AS|FA HG)
table AS FA HG[:, 6, 0] = [0.45, 0.55]
table AS FA HG[:, 0, 1] = [0.55, 0.45]
table AS FA HG[:, 1, 0] = [0.65, 0.35]
table AS FA HG[:, 1, 1] = [0.75, 0.25]




P(AS = 1,HT) = Yy nora P(AS = 1,FA, HG, HT, FG) @ @

() ()

prob HT = np.zeros(2) e
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [©, 1]:
for FA in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG _HT FG[HG, HT, FG] *
table FA[FA] *
table AS _FA HG[AS, FA, HG]

print(prob_ HT)

[ ©.0672 ©.2528]



m AS = table AS FA HG[1, :, :]
prob HT = np.zeros(2)
for HT in [©, 1]:
for FG in [0, 1]:
for HG in [©, 1]:
for FA in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
table HG _HT FG[HG, HT, FG] *
table FA[FA] *
m_AS[FA, HG]

print(prob_HT)

[ ©.0672 ©.2528]



Any ldeas to reduce #multiplications?

m AS = table AS FA HG[1, :, :]

prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
for FA in [0, 1]:

prob HT[HT] += (table FG[FG] * table HT[HT] *
table HG HT FG[HG, HT, FG] *

table FA[FA] * m_AS[FA, HG]
)

print(prob_ HT)

[ ©.0672 0.2528]



Loop unrolling

m_AS = table AS FA HG[1, :,
prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
prob HT[HT] +=

prob HT[HT] +=

print(prob_ HT)

[ ©.0672 0.2528]

: ]

(ta
ta
ta

(ta
ta
ta

ple FG[FG] * table HT[HT] *
ple HG HT FG[HG, HT, FG] *

ple FA[O] * m AS[O, HG] <

ple FG[FG] * table HT[HT] *
ple HG HT FG[HG, HT, FG] *

ple FA[1] * m_AS[1, HG] <



Rearranging the parentheses

m AS = table AS FA HG[1, :, :]
prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [©, 1]:

prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG HT FG[HG, HT, FG
(table FA[O] * m AS[©, HG]

table FA[1] * m AS[1, HG]
)

)
print(prob_ HT)

[ ©.0672 ©.2528]
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Define a message function for FA

m AS = table AS FA HG[1, :, :]

def m FA(HG): return (table FA[©] * m_AS[©, HG] +
table FA[1] * m_AS[1, HG])

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
table HG HT FG[HG, HT, FG] *

m_FA(HG)

)

print(prob_ HT)

[ ©.0672 ©.2528]



Better to precompute m_FA

m AS = table AS FA HG[1, :, :]

m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG HT FG[HG, HT, FG] *
m_FA[HG]
)

print(prob_ HT)

[ ©.0672 ©.2528]



FA 1s removed, then remove HG

table AS FA HG[1, :, :]

table FA[©] * m AS[O, :] + table FA[1] * m AS[1, :]

m_AS
m_FA

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
table HG HT FG[HG, HT, FG] *

m_FA[HG]

)

print(prob HT)

[ ©.0672 ©.2528]



Loop unrolling, rearranging the parentheses

m_AS
m_FA

table AS FA HG[1, :, :]

table FA[©] * m AS[O, :] + table FA[1] * m AS[1, :]

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
(table HG HT FG[@©, HT, FG] * m_FA[0] +
table HG HT FG[1, HT, FG] * m FA[1]
)
)

print(prob_ HT)

[ ©.0672 ©.2528]



Define a message function for HG

m AS = table AS FA HG[1, :, :]
m FA = table FA[O] * m _AS[O, :] + table FA[1] * m _AS[1, :]

def m HG(HT, FG): return (table HG HT FG[©, HT, FG] * m FA[O] +
table HG HT FG[1, HT, FG] * m_FA[1])

prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
m_HG(HT, FG)

)
print(prob_HT)

[ ©.0672 0©.2528]



Aqgain, better to precompute m HG

m AS = table AS FA HG[1, :, :]
m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]
m HG = (table HG HT FG[©O, :, :] * m _FA[O] +

table HG HT FG[1, :, :] * m_FA[1])
prob HT = np.zeros(2)
for HT in [0, 1]:
for FG in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
m_HG[HT, FG]

)
print(prob_ HT)

[ ©.0672 ©.2528]



Then FG, directly define the message func

m AS = table AS FA HG[1, :, :]
m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]
m HG = (table HG HT FG[©9, :, :] * m _FA[O] +

table HG HT FG[1, :, :] * m _FA[1])

def m FG(HT): return (table FG[©] * m HG[HT, 0] +
table FG[1] * m HG[HT, 1])

prob HT = np.zeros(2)
for HT in [6, 1]:
prob HT[HT] += m_FG(HT) * table HT[HT]

print(prob_ HT)

[ ©.0672 ©0.2528]



Finally

m AS = table AS FA HG[1, :, :]

m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]

m HG = (table HG HT FG[O, :, :] * m _FA[O] +
table HG HT FG[1, :, :] * m _FA[1])
m FG = table FG[O] * m HG[:, ©] + table FG[1] * m HG[:, 1]

prob HT = m_FG * table HT

print(prob HT)

[ 0.0672 ©0.2528]



Finally (how many multiplications?)

m AS = table AS FA HG[1, :, :] ©

m FA = table FA[O] * m _AS[0O, :] + table FA[1] * m _AS[1, :]
2 2

m HG = (table HG HT FG[©, :, :] * m _FA[©] + 4
table HG HT FG[1, :, :] * m_FA[1]) 4
m FG = table FG[O] * m HG[:, 0] + table FG[1] * m HG[:, 1]
2 2
prob HT = m_FG * table HT
2
print(prob HT) in total 2*2 + 4*2 + 2*2 + 2 = 18

[ ©.0672 0.2528]



Nalve way (how many multiplications?)

AS = 1

prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for HG in [6, 1]:
for FA in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG _HT FG[HG, HT, FG] *

table FA[FA] *
table AS _FA HG[AS, FA, HG]
) 4

print(prob HT) in total 4 * 16 = 64

[ ©.0672 0.2528]



What we have done mathematically?

m AS = table AS FA HG[1, :, :]

mys(FA,HG) = P(AS = 1|FA,HG)
m _FA = table FA[©] * m AS[©, :] + table FA[1] * m AS[1, :]

Mg (HG) = Z P(FA)Ym,<(FA, HG)
FA

m HG

(table HG HT FG[@, :, :] * m _FA[O] +
table HG HT FG[1, :, :] * m_FA[1])

My (HT, FG) = 2 P(HG|HT, FG)mp,(HG)
HG
m FG = table FG[O] * m HG[:, 0] + table FG[1] * m HG[:, 1]
Mg (HT) = 2 P(FG)my.(HT, FG)
FG

prob HT = m_FG * table HT
P(AS =1,HT) = mp;(HT)P(HT)



Statistical Machine Learning (S2 2017) Deck 22

Nuclear power plant (cont.)

= Pr(HT) Y5 Pr(FG) Xy Pr(HG|HT, FG) Y., Pr(FA) Pr(AS = t|FA, HG) @ @
eliminate AS: since AS observed, really a no-op @

= Pr(HT) Xpg Pr(FG) Xy Pr(HG|HT,FG) Y. p o Pr(FA) mys (FA, HG) @ @
eliminate FA: multiplying 1x2 by 2x2 @ @

= Pr(HT) Y5 Pr(FG) Yy Pr(HG|HT,FG) mp,(HG) @ @

Multiplication
eliminate HG: multiplying 2x2x2 by 2x1 @ of tables. followed

by summing, is actually

matrix multiplication
— Pr(HT) ¥ g Pr(FG) myg (HT, FG) ;

eliminate FG: multiplying 1x2 by 2x2 FA HG
f t
He)= Tt x
= Pr(HT) mg;(HT) @ T 0.60.4 F f 1.0/ 0
A t |0.80.2F




But why the order FA - HG — FG — HT?

m_AS|= table AS FA HG[1, :, :] ©

m_FA|l= table FA[O] * m_AS[O, :] + table FA[1] * m _AS[1, :]
2 2

m_HG|= (table HG HT FG[©, :, :] * m _FA[@] + 4
table HG HT FG[1, :, :] * m_FA[1]) 4
m_FG|= table FG[O] * m HG[:, 0] + table FG[1] * m HG[:, 1]
2 2
probYHT = m_FG * table HT
2
print(prob HT) in total 2*2 + 4*2 + 2*2 + 2 = 18

[ ©.0672 0.2528]



Try to eliminate HG after AS ()

m AS = table AS FA HG[1, :, :] Q @

prob HT = np.zeros(2) @
for HT in [6, 1]:
for FG in [0, 1]:
for FA in [0, 1]:
for HG in [0, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *

table HG _HT FG[HG, HT, FG] *
table FA[FA] *
m_AS[FA, HG]
)

print(prob_ HT)

[ ©.0672 ©.2528]



Try to eliminate HG after AS

m AS = table AS FA HG[1, :, :]
def m HG(FA, HT, FG): already 8*2 = 16 multiplications
return (m_AS[FA, 0] * table HG HT FG[©, HT, FG] +
m_AS[FA, 1] * table HG HT FG[1, HT, FG])
because HG connected to 3 other nodes
prob HT = np.zeros(2)
for HT in [6, 1]:
for FG in [0, 1]:
for FA in [6, 1]:
prob HT[HT] += (table FG[FG] * table HT[HT] *
table FA[FA] *
m_HG(FA, HT, FG)

)

print(prob_ HT)

[ ©.0672 ©.2528]



A summary for elimination algorithms

1 An efficient way to marginalize random variables

1 The order of elimination affects the efficiency

-1 Removing a node with many children and parents results
1n very large clique (message matrix)

) Time complexity exponential in the largest clique

1By the way, what 1s the reconstructed graph?



Statistical Machine Learning (S2 2017) Deck 22

G P P00 o

PGM aftef succegsive eliminations Jfreconstructed” graph
From process called
moralisation

e Put them together > the reconstructed graph

31
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Probabilistic inference by simulation

e Exact probabilistic inference can be expensive/impossible
 Can we approximate numerically?

e |dea: sampling methods
* Cheaply sample from desired distribution
* Approximate distribution by histogram of samples

32



A summary for sampling methods

I If we get samples, we can
Juse them to calculate expectations (approximately)

) approximate distributions by histogram of samples

I Useful when exact inference 1s expensive or impossible

1 There are many methods can sample from unnormalized
distributions

) Very useful because normalization is the main challenge
for Bayesian inference



A summary for EM algorithm

1 Designed for MLE when there are latent variables
1 The joint P(X,Z|w), X observed, Z unobserved, w paras

J MLE for w: maxlog P(X|w) =log)., P(X, Z|w)
w

1 Due to the marginalization for Z, P(X|w) 1s complicated

J Gradients are often difficult to calculate

1 EM can deal with P(X|w) by
 E-step: estimate P(Z|X,w)

1 M-step: MLE for w using P(Z|X,w), max Ezx ,,[log P(X, Z|w)]
w
1 Beneficial because P(X, Z|w) can be factorized

) Sensitive to initialization, may converge to different results



Tutor Feedback

1 Search for “casmas” casmas 0

All Images Maps Videos Shopping More Settings

About 110,000 results (0.40 seconds)

CaSMasS - University of Melbourne

1 Tutor feedback Ma$ - University of Melbo
Welcome to CaSMaS. CaSMas is the casual staff management system for the Department of

< C' @ Secure | https://apps.eng.unimelb.edu.au/casmas/ l Y versity of Melbourne.

Fag
CaSMasS Help. FAQ. What are the
important dates | need to know?

Melbourne School of Engineering

CaSMaS

'HE UNIVERSITY OF Tutor Feedback | Melbourne School

MELBOURNE

of ... Quality of Tutor ...

Register Account Reset Password Bugreport Tutor Feedback

-
-
——’
-

Welcome to CaSMa3, - === =
e

1 COMP90051 - select a class 2 5:15pm or 6:16pm > ...

Q

Tools

Tutor Feedback | Melbourne ...




1 Good luck on your exams!

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE
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