COMP90051

Workshop Week 11

About the Workshops

- **7** sessions in total
 - **Tue 12:00-13:00 AH211**
 - **Tue 12:00-13:00 AH108 ***
 - **Tue 13:00-14:00 AH210**
 - **Tue 16:15-17:15** AH109
 - **Tue 17:15-18:15 AH236 ***
 - **Tue 18:15-19:15** AH236 *
 - **Fri** 14:15-15:15 AH211

About the Workshops

Homepage

https://trevorcohn.github.io/comp90051-2017/workshops

□ Solutions will be released on next Friday (a week later).

Syllabus

1	Introduction; Probability theory	Probabilistic models; Parameter fitting	
2	Linear regression; Intro to regularization	Logistic regression; Basis expansion	
3	Optimization; Regularization	Perceptron	
4	Backpropagation	CNNs; Auto-encoders	
5	Hard-margin SVMs	Soft-margin SVMs	
6	Kernel methods	Ensemble Learning	
7	Clustering	EM algorithm	
8	Principal component analysis; Multidimensional Scaling	Manifold Learning; Spectral clustering	
9	Bayesian inference (uncertainty, updating)	Bayesian inference (conjugate priors)	
10	PGMs, fundamentals	PGMs, independence	\leftarrow
11	Guest lecture (TBC)	PGMs, inference	
12	PGMs, statistical inference	Subject review	

Outline

Review the lecture, background knowledge, etc.

- □ Formal notations for probability
- □ Joint probability for probabilistic graphical models (PGMs)
 - Directed PGMs
 - Undirected PGMs
- □ Independence in PGMs
 - Directed PGMs
 - Undirected PGMs

U Worksheet

Formal notations for probability

□ Upper-case letters for random variables (r.v.'s) □ *A*, *B*, *C*

Lower-case letters for specific values *a*, *b*, *c*

□ *P* for the operator to calculate the probability □ P(A = a), P(A = a|B = b), P(A < 10), $P(A = 1|B \ge 5)$ Formal notations for probability

□ Suppose *A* is a binary random variable

 $\square P(A = 0)$ is a number $\square P(A = 1)$ is a number

□ P(A) is the distribution for the random variable *A* □ P(A) represents P(A = 0) and P(A = 1)

$$P(A,B)$$
 and $P(A = a, B = b)$

□ Suppose *A* and *B* are both binary random variables

$$\square P(A,B) = P(A)P(B) \text{ is equivalent to } \dots$$
$$\square P(A = a, B = b) = P(A = a)P(B = b) \quad \forall a, b \in \{0,1\}$$

$$\square P(A = 0, B = 0) = P(A = 0)P(B = 0)$$
$$\square P(A = 1, B = 0) = P(A = 1)P(B = 0)$$

$$\square P(A = 0, B = 1) = P(A = 0)P(B = 1)$$

$$\square P(A = 1, B = 1) = P(A = 1)P(B = 1)$$

Sometimes we write partially P(A = 1, B)Given the probability table:P(A = 1, B) can beP(A = 1, B) can be

 \Box interpreted as an unnormalized distribution for *B*

P(A = 1, B) is unnormalized P(B|A = 1)

Given the probability table: P(A = 1, B) can be

P(A,B)	B = 0	B = 1
A = 0	0.1	0.2
A = 1	0.3	0.4

 \Box interpreted as an unnormalized distribution for *B* (*A* = 1)

$$\square P(B|A = 1) \propto P(A = 1, B)$$

□ P(A = 1, B = 0) = 0.3 → P(B = 0|A = 1) = 3/7□ P(A = 1, B = 1) = 0.4 → P(B = 1|A = 1) = 4/7 P(A)

Given the probability table: P(A) is

P(A,B)	B = 0	B = 1
A = 0	0.1	0.2
A = 1	0.3	0.4

□ the marginal distribution for *A*

 $\Box P(A) = \sum_{B} P(A, B)$

$$P(A = 0) = \sum_{B} P(A = 0, B) = \sum_{b \in \{0,1\}} P(A = 0, B = b)$$
$$= P(A = 0, B = 0) + P(A = 0, B = 1) = 0.3$$

 $\square P(A = 1) = 1 - P(A = 0) = 0.7$

What about P(A|B)?

Given the probability table: P(A|B) can be

P(A,B)	B = 0	B = 1
A = 0	0.1	0.2
A = 1	0.3	0.4

 \Box interpreted as two distributions for *A* given *B* = 0 and 1

P(A|B = 0) is a distribution P(A = 0|B = 0) = 1/4, P(A = 1|B = 0) = 3/4

 $\square P(A|B = 1)$ is another one

 $\square P(A = 0|B = 1) = 1/3, P(A = 1|B = 1) = 2/3$

And P(A = 1|B) ... ?

Given the probability table: P(A = 1|B) is

P(A,B)	B = 0	B = 1
A = 0	0.1	0.2
A = 1	0.3	0.4

 \Box the likelihood of observing A = 1 under different values of B

We have calculated that

$$\square P(A = 0|B = 0) = 1/4, P(A = 1|B = 0) = 3/4$$

 $\square P(A = 0|B = 1) = 1/3, P(A = 1|B = 1) = 2/3$

If we know the joint distribution P(A, B)

- □ We can calculate everything, such as
- Marginal distributions
 - $\Box P(A)$ and P(B)
 - Summation or integration over other random variables

$$\square P(A) = \sum_{B} P(A, B) = \sum_{b \in \{0,1\}} P(A, B = b)$$

- Conditional distributions
 - $\square P(A|B)$ and P(B|A)
 - Division of two unconditional distributions
 - $\Box P(A|B) = P(A,B)/P(B)$

In general, if we know P(A, B, C, D, E)

 $\square P(A) = \sum_{B,C,D,E} P(A,B,C,D,E)$

 $\Box P(A,B) = \sum_{C,D,E} P(A,B,C,D,E)$

 $\Box P(A, B, C) = \sum_{D, E} P(A, B, C, D, E)$

 $\square P(A, B, C, D) = \sum_{E} P(A, B, C, D, E)$

 $\Box P(B|A) = P(A,B)/P(A)$

 $\square P(B,C|A) = P(A,B,C)/P(A)$

 $\square P(C,D|A,B) = P(A,B,C,D)/P(A,B)$

Outline

Review the lecture, background knowledge, etc.

- □ Formal notations for probability
- □ Joint probability for probabilistic graphical models (PGMs)
 - Directed PGMs
 - **Undirected** PGMs
- □ Independence in PGMs
 - Directed PGMs
 - Undirected PGMs

U Worksheet

How to calculate the joint distribution?

Directed PGMs

$$P(\text{all } r. v.) = \prod_{\text{every } r. v.} P(r. v. | \text{parents of } r. v.)$$

□ Undirected PGMs

$$P(\text{all } r.v.) \propto \prod_{\text{every clique}} f_{clique}(r.v.\text{ in clique})$$

$$P(A, B, C, D, E, F)$$

= $P(A)P(B|A)P(C|B)$
 $\cdot P(D|A, B)P(E|A, B, D)P(F|B, C)$

P(A, B, C, D, E, F) $\propto f_1(A, B, D, E)f_2(B, C, F)$ $= \frac{1}{z}f_1(A, B, D, E)f_2(B, C, F)$

 $Z = \sum_{A,B,C,D,E,F} f_1(A,B,D,E) f_2(B,C,F)$

Outline

Review the lecture, background knowledge, etc.

- □ Formal notations for probability
- □ Joint probability for probabilistic graphical models (PGMs)
 - Directed PGMs
 - **Undirected** PGMs
- □ Independence in PGMs
 - Directed PGMs
 - Undirected PGMs

U Worksheet

Independence in directed PGMs

□ Paths from *Y* to *X*

□ If a path exists, then *X* and *Y* are dependent*

***** the PGM doesn't require they should be independent

Independence in undirected PGMs

□ Paths from *Y* to *X*

□ If the path exists, then *X* and *Y* are dependent

A practice for independence in PGMs

<u>http://web.mit.edu/jmn/www/6.034/d-separation.pdf</u>

Outline

Review the lecture, background knowledge, etc.

- □ Formal notations for probability
- □ Joint probability for probabilistic graphical models (PGMs)
 - Directed PGMs
 - **Undirected** PGMs
- □ Independence in PGMs
 - Directed PGMs
 - Undirected PGMs

U Worksheet