COMP90051

Workshop Week 10

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE



About the Workshops

17 sessions in total

1 Tue 12:00-13:00 AH211
J Tue 12:00-13:00 AH108 *
] Tue 13:00-14:00 AH210
1 Tue 16:15-17:15 AH109
JTue 17:15-18:15 AH236 *
J Tue 18:15-19:15 AH236 *
J Fri114:15-15:15 AH211



About the Workshops

I Homepage
1 https://trevorcohn.github.10/comp90051-2017/workshops

1 Solutions will be released on next Friday (a week later).


https://trevorcohn.github.io/comp90051-2017/workshops

Reminder

1 Project 2
) Kaggle competition due on Mon, 09/0Oct/17
! Worksheet, report, and code due on Wed, 11/Oct/17

J Exam
J Fri, 03/Nov/2017, 8:30am
1 3 hours
1 Royal Exhibition Building



Syllabus

1 |Introduction; Probabilistic models;
Probability theory Parameter fitting

2 | Linear regression; _ogistic regression;
ntro to regularization Basis expansion

3 | Optimization; Regularization |Perceptron

4 | Backpropagation CNNs; Auto-encoders

5 |Hard-margin SVMs Soft-margin SVMs

6 |Kernel methods Ensemble Learning

7 | Clustering EM algorithm

8 |Principal component analysis; Manifold Learning;
Multidimensional Scaling Spectral clustering

9 |Bayesian inference Bayesian inference
(uncertainty, updating) (conjugate priors)

10 | PGMs, fundamentals PGMs, independence




Outline

JReview the lecture, background knowledge, etc.
I MLE, MAP, Bayesian estimates
! Comparison between Bayesian and frequentist
! Likelihood, prior, and posterior
) Conjugate prior and likelihood

) Bayesian linear regression

1 IPython notebook task: Bayesian linear regression



MLE, MAP

1 Training set {(x;, yi)}livzl, X for all x;, y for all y;

AW = max,, [T\-; p(yi|x;, w) or max,, [T\-; p(yi|x;, w) p(W)
J Prediction for x* is p(y*|x*, W)
1 Choose hyper-parameters / models

lon a held-out validation set

by cross-validation

Jon OOB samples (random forest)



Bayesian

N

X Hp(yi\xi,W)p(W)

=1

p(y|X,w)p(w)
p(y|X)

p(w|X,y) =

I Mean estimate E[w], uncertainty Var(w) = confidence

- Prediction for x* 1s p(y*|x*) = Eyx, p(y"|x", w)

1 Choose hyper-parameters / models by comparing p(y|X)

Jdmain difficulty: get p(y|X) or normalize p(y|X, w)p(w)

-

have to approximate the prediction if p(y|X) 1s intractable

_l some methods can sample from p(w|X, y) without normalizing
p(y|X,w)p(w) and then make approximate predictions



Frequentist and Bayesian

! Frequentist
J find a single parameter vector to best fit the training set

1 the best parameters are used to make predictions directly

I Bayesian
J formulate the full posterior given the training data
) all the weights are used to make expected predictions

) where each 1s scaled by 1ts posterior probability



Bayesian
1 Advantages

Jless sensitive to overfitting (expected predictions)

| particularly with small training sets

J make use of all the data at once

-l no need to hold out validation data, or repeatedly train and test

_ won’t overfit to the held-out set when selecting many parameters

I Disadvantages
J exact inference 1s sometimes intractable
1 approximate inference may be inefficient and inaccurate

Jalgorithms are sometimes complex



Bayesian formula

p(y|X,w)p(w)
p(yIX)

p(wlX,y) =

Jp(y|X,w) likelihood

Jp(w) prior

Jp(y|X) marginal likelihood or evidence
Jp(w|X,y) posterior

dpyI1X) = Xwp@IX, wpWw) or p(¥|X) = [ p(y|X, w)p(w) dw



Conjugate prior and likelihood
Jwhen p(y|X,w)p(w) has the same form as p(w)

J simplifies the problem of finding the posterior p(w|X, y)

-l as needed 1in Bayesian inference

Jallows for exact computation of the evidence
p(y|X, w)p(w)
p(yIX) =
p(w|X,y)




Statistical Machine Learning (52 2017) Lecture 18

Suite of useful conjugate priors

_ Normal Normal (for mean)
O
z .
= Normal Inverse Gamma (for variance)
Q . .
= or Inverse Wishart (covariance)
S
5 Binomial Beta
=
S Multinomial Dirichlet
Poisson Gamma

counts

14



Statistical Machine Learning (52 2017)

Lecture 18

Bayesian Linear Regression (cont)

e We have two Normal distributions

* normal likelihood x normal prior

* Their product is also a Normal distribution

* conjugate prior: when product of likelihood x prior
results in the same distribution as the prior

* evidence can be computed easily using the normalising
constant of the Normal distribution

p(w|X,y,c*) o Normal

x Normal

0, v°Ip)Normal(y|Xw, oIy )

WN,VN)

closed form solution for

posterior!

15



Statistical Machine Learning (52 2017)

Lecture 18

Bayesian Linear

p(w|X,y,o?) oc Normal(w

x Normal(w

where

Regression (cont)

0, v°Ip)Normal(y|Xw, oIy )
WN, VN)

Note that mean (and

mode) are the MAP
wy = —VyX'y solution from before

2

Vy = o?(X'X + =1p)~"!

Y

Advanced: verify by expressing product of two
Normals, gathering exponents together and
‘completing the square’ to express as squared
exponential (i.e., Normal distribution).

16



Outline

JReview the lecture, background knowledge, etc.
I MLE, MAP, Bayesian estimates
) Comparison between Bayesian and frequentist
! Likelihood, prior, and posterior
) Conjugate prior and likelihood

) Bayesian linear regression

J IPython notebook task: Bayesian linear regression
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