COMP90051

Workshop Week 09

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

About the Workshops

- **7** sessions in total
 - **Tue 12:00-13:00 AH211**
 - **Tue 12:00-13:00 AH108 ***
 - **Tue 13:00-14:00 AH210**
 - **Tue 16:15-17:15** AH109
 - **Tue 17:15-18:15 AH236 ***
 - **Tue 18:15-19:15** AH236 *
 - **Fri** 14:15-15:15 AH211

About the Workshops

Homepage

<u>https://trevorcohn.github.io/comp90051-2017/workshops</u>

□ Solutions will be released on next Friday (a week later).

□ No lecture & workshop next week

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Syllabus

1	Introduction; Probability theory	Probabilistic models; Parameter fitting	
2	Linear regression; Intro to regularization	Logistic regression; Basis expansion	
3	Optimization; Regularization	Perceptron	
4	Backpropagation	CNNs; Auto-encoders	
5	Hard-margin SVMs	Soft-margin SVMs	
6	Kernel methods	Ensemble Learning	
7	Clustering	EM algorithm	
8	Principal component analysis; Multidimensional Scaling	Manifold Learning; Spectral clustering	\leftarrow
9	Bayesian fundamentals	Bayesian inference with conjugate priors	
10	PGMs, fundamentals	Conditional independence	
11	PGMs, inference	Belief propagation	
12	Statistical inference; Apps	Subject review	

Outline

Review the lecture, background knowledge, etc.

- Principal component analysis (PCA)
- Multidimensional scaling (MDS)
- 🗖 Isomap
 - Geodesic distance
- Spectral clustering
 - Laplacian eigenmaps

• Work on project 2

Principal components analysis

🖵 Input

 $\Box N$ points (high dimensional)

Output

Components with their variance

 $\Box N$ points (low dimensional)

Objective

□ Find maximum variance subspace

Multidimensional scaling (MDS)

🖵 Input

 $\Box \text{ Distance matrix } D \ (N \times N)$

Output

 \square N points in d dimensions

Objective

 \Box Find *N* points in *d* dimensions

 \Box So that their pair-wise distances are similar to those in D

Euclidian distance + MDS

Input

 $\Box N$ points (high dimensional)

Output

- $\square N$ points (low dimensional)
- Objective
 - \Box Transform *N* points to lower dimension
 - \Box So that their pair-wise Euclidian distances are preserved

Isomap = geodesic distance + MDS

🗖 Input

□ N points (high dimensional)

Output

- $\square N$ points (low dimensional)
- Objective
 - \Box Transform *N* points to lower dimension
 - □ So that their pair-wise geodesic distances are preserved

Geodesic distance

Construct a graph

- □ There are edges between neighbouring points
 - □ Option 1: distance < a threshold
 - Option 2: *k*-nearest neighbours
- UWeights are distances
- □ Find all-pairs shortest paths
- □ The geodesic distance is the length of the shortest path

Laplacian eigenmaps

🗖 Input

 $\square N$ points $x_1, x_2, ..., x_N$ (high dimensional)

Output

 $\square N$ points $z_1, z_2, ..., z_N$ (low dimensional)

Objective

□ Similar points are closer in the lower dimensional space

$$\min_{\boldsymbol{z}} \sum_{i,j} \|\boldsymbol{z}_i - \boldsymbol{z}_j\|^2 A_{ij}$$

• where *A* is the adjacency matrix

Adjacency matrix

Adjacency matrix *A* for a graph

Option 1&2 $A_{ij} = \begin{cases} 1 \text{ if } x_i \text{ and } x_j \text{ are neighbouring points} \\ 0 \text{ otherwise} \end{cases}$

Option 3

$$A_{ij} = \exp\left(-\frac{1}{\sigma} \left\|\boldsymbol{x}_i - \boldsymbol{x}_j\right\|^2\right)$$

A kind of similarity matrix

Spectral clustering

Laplacian eigenmaps + clustering

Laplacian eigenmaps for dimension reduction
Any clustering method, for example, *k*-means

A summary

- Dimension reduction
 - \Box PCA
 - Euclidian distance + MDS
 - □ Isomap = geodesic distance + MDS
 - Laplacian eigenmaps

- Clustering
 - □ Spectral clustering = Laplacian eigenmaps + clustering

Outline

Review the lecture, background knowledge, etc.

- Principal component analysis (PCA)
- Multidimensional scaling (MDS)
- 🗖 Isomap
 - Geodesic distance
- Spectral clustering
 - Laplacian eigenmaps

Work on project 2