COMP90051

Workshop Week 07

About the Workshops

- **7** sessions in total
 - **Tue 12:00-13:00 AH211**
 - **Tue 12:00-13:00 AH108 ***
 - **Tue 13:00-14:00 AH210**
 - **Tue 16:15-17:15** AH109
 - **Tue 17:15-18:15 AH236 ***
 - **Tue 18:15-19:15** AH236 *
 - **Fri** 14:15-15:15 AH211

About the Workshops

Homepage

<u>https://trevorcohn.github.io/comp90051-2017/workshops</u>

□ Solutions will be released on next Friday (a week later).

Syllabus

1	Introduction; Probability theory	Probabilistic models; Parameter fitting	
2	Linear regression; Intro to regularization	Logistic regression; Basis expansion	
3	Optimization; Regularization	Perceptron	
4	Backpropagation	CNNs; Auto-encoders	
5	Hard-margin SVMs	Soft-margin SVMs	\leftarrow
6	Kernel methods	Ensemble Learning	\leftarrow
7	Clustering	EM algorithm	
8	Dimensionality reduction; Principal component analysis	Multidimensional scaling; Spectral clustering	
9	Bayesian fundamentals	Bayesian inference with conjugate priors	
10	PGMs, fundamentals	Conditional independence	
11	PGMs, inference	Belief propagation	
12	Statistical inference; Apps	Subject review	

Review the lecture, background knowledge, etc.

Bagging

OOB score

SVM

Hard-margin & Soft-margin

Comparison with logistic regression, perceptron

Kernel method

Run ipython notebooks

Review the lecture, background knowledge, etc.

Bagging

OOB score

SVM

Hard-margin & Soft-margin

Comparison with logistic regression, perceptron

Kernel method

Run ipython notebooks

Bagging (bootstrap aggregating)

A model averaging approach

Given a standard training set

Bootstrap the standard training set

 \Box To generate *m* new training sets

Bootstrap = sample uniformly and with replacement

□ Train *m* base models on the above *m* training sets

❑ Aggregate the *m* base models to make predictions
❑ By voting (classification) or averaging (regression)

Sample without replacement						
Iteration	Choose from	Generate	Sample			
1	[123456789]	[4]	[4]			
2	[12356789]	[1]	[4,1]			
3	[2356789]	[3]	[4,1,3]			
4	[256789]	[2]	[4,1,3,2]			

□ Sample with replacement

Iteration	Choose from	Generate	Sample
1	[123456789]	[4]	[4]
2	[123456789]	[1]	[4,1]
3	[123456789]	[4]	[4,1,4]
4	[123456789]	[1]	[4,1,4,1]

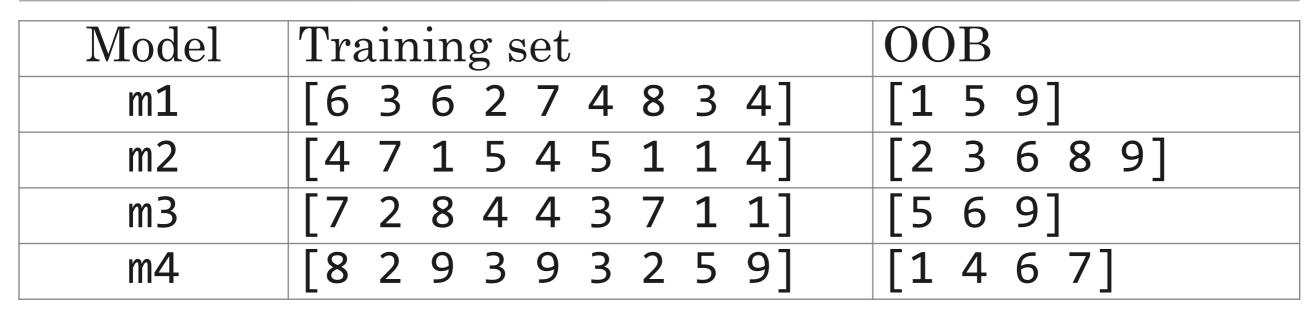
Original dataset: $\{(x_i, y_i)\}, i = 1, 2, ..., 9$

Model	Training set
m1	[6 3 6 2 7 4 8 3 4]
m2	[4 7 1 5 4 5 1 1 4]
m3	[7 2 8 4 4 3 7 1 1]
m4	[8 2 9 3 9 3 2 5 9]

To make a prediction for *x*

$$\hat{y} = \frac{1}{4} \{m1.predict(x) + m2.predict(x) + m3.predict(x) + m4.predict(x)\}$$

OOB: out-of-bag



To make a prediction for *x*

$$\hat{y} = \frac{1}{4} \{m1.predict(x) + m2.predict(x) + m3.predict(x) + m4.predict(x)\}$$

\tilde{y}_i : aggregation of models haven't seen x_i

Model	Training set	OOB
m1	[6 3 6 2 7 4 8 3 4]	[1 5 9]
m2	[4 7 1 5 4 5 1 1 4]	[2 3 6 8 9]
m3	[7 2 8 4 4 3 7 1 1]	[5 6 9]
m4	[8 2 9 3 9 3 2 5 9]	[1 4 6 7]

$$\begin{split} \tilde{y}_{1} &= \frac{1}{2} \{ m1. predict(\mathbf{x}_{1}) + m4. predict(\mathbf{x}_{1}) \} \\ \tilde{y}_{2} &= m2. predict(\mathbf{x}_{2}) \\ \tilde{y}_{4} &= m4. predict(\mathbf{x}_{4}) \\ \tilde{y}_{5} &= m3. predict(\mathbf{x}_{5}) \\ \tilde{y}_{6} &= \frac{1}{3} \{ m2. predict(\mathbf{x}_{6}) + m3. predict(\mathbf{x}_{6}) + m4. predict(\mathbf{x}_{6}) \} \\ \tilde{y}_{7} &= m4. predict(\mathbf{x}_{7}) \\ \tilde{y}_{8} &= m2. predict(\mathbf{x}_{8}) \\ \tilde{y}_{9} &= \frac{1}{3} \{ m1. predict(\mathbf{x}_{9}) + m2. predict(\mathbf{x}_{9}) + m3. predict(\mathbf{x}_{9}) \} \\ \end{split}$$

OOB score (regression)

] OOB mean squared error $MSE_{OOB} = \frac{1}{|D_{train}|} \sum_{(x_i, y_i) \in D_{train}} (y_i - \tilde{y}_i)^2$

■ Mean squared error on a validation set $MSE_{val} = \frac{1}{|D_{val}|} \sum_{(x_i, y_i) \in D_{val}} (y_i - \hat{y}_i)^2$

□ OOB score is an alternative to the score on validation set

Can be used with any type of method

Usually applied to decision tree method

In sklearn:

>>> from sklearn.ensemble import BaggingClassifier >>> from sklearn.neighbors import KNeighborsClassifier >>> bagging = BaggingClassifier(KNeighborsClassifier(), ... max_samples=0.5, max_features=0.5)

Review the lecture, background knowledge, etc.

Bagging

OOB score

SVM

Hard-margin & Soft-margin

Comparison with logistic regression, perceptron

Kernel method

Run ipython notebooks

Hard-margin

$$\min_{w,b} \frac{1}{2} \|w\|^2$$

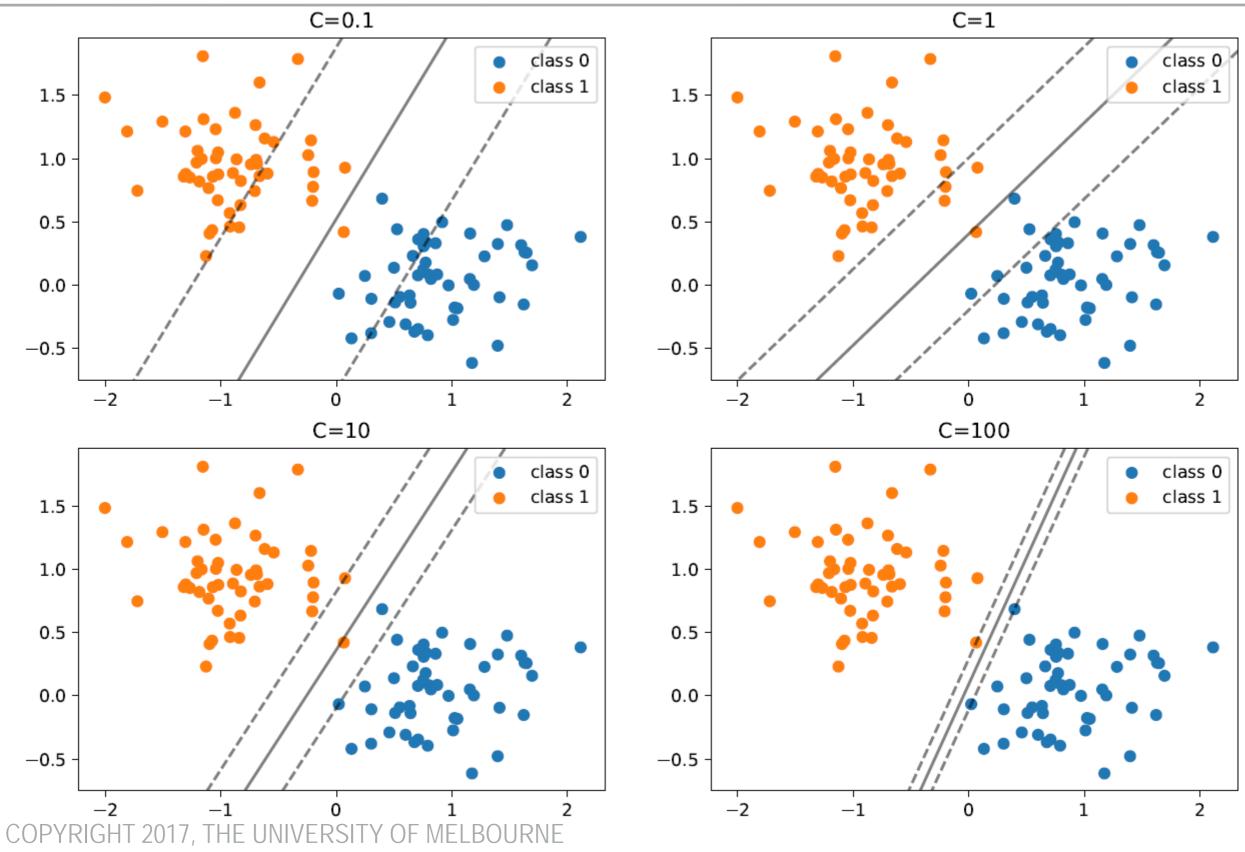
s.t.
$$y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \ge 1$$

Soft-margin

$$\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=0}^n \max(0, 1 - y_i(w^T x_i + b))$$

$\Box \text{Hard-margin} \Leftrightarrow C \to +\infty$

SVM - different C values



SVM and Perceptron

$$s_i = \boldsymbol{w}^T \boldsymbol{x}_i + b$$

□ Hinge loss

$$L(\boldsymbol{x}_i, y_i) = \max(0, 1 - y_i s_i)$$

Perceptron loss

$$L(\boldsymbol{x}_i, y_i) = \max(0, -y_i s_i)$$

Logistic regression (binary classification)

$$s_i = \boldsymbol{w}^T \boldsymbol{x}_i + b$$

 \Box Log-loss when $y \in \{0,1\}$ $\hat{y}_i = p(y=1|\boldsymbol{x}=\boldsymbol{x}_i) = \frac{1}{1+e^{-s_i}}$

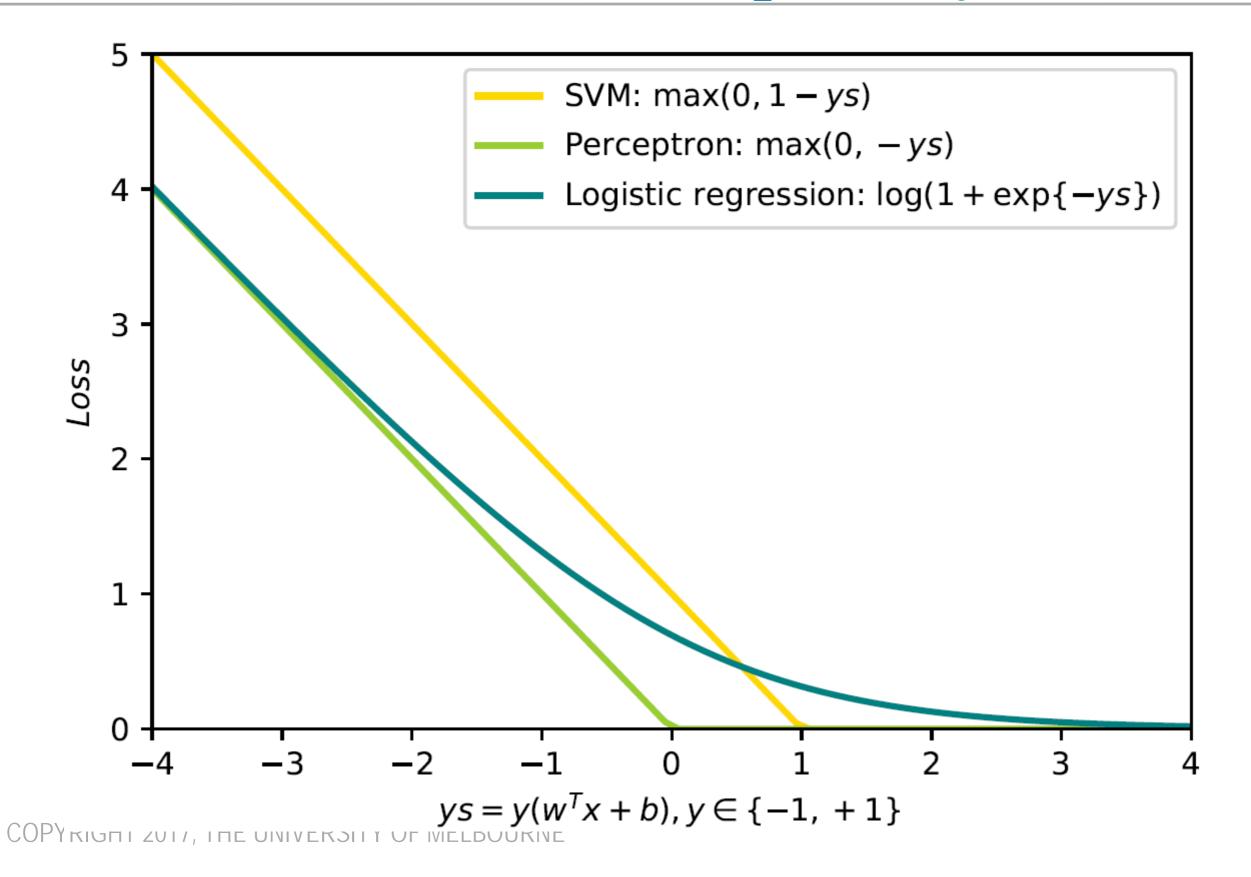
$$L(\mathbf{x}_{i}, y_{i}) = -(1 - y_{i})\log(1 - \hat{y}_{i}) - y_{i}\log\hat{y}_{i}$$

Log-loss when
$$y \in \{-1, +1\}$$

$$p(y|\mathbf{x} = \mathbf{x}_i) = \frac{1}{1 + e^{-ys_i}}$$

$$L(\mathbf{x}_{i}, y_{i}) = -\log p(y = y_{i} | \mathbf{x} = \mathbf{x}_{i}) = \log(1 + e^{-y_{i}s_{i}})$$

Loss function for an example (x, y)



Review the lecture, background knowledge, etc.

Bagging

OOB score

 \Box SVM

Hard-margin & Soft-margin

Comparison with logistic regression, perceptron

□ Kernel method

Run ipython notebooks

Kernel method

A kernel function is

- □ a similarity function over pairs of raw data points
- □ the dot product of a pair of transformed data points

 $K(\boldsymbol{u},\boldsymbol{v}) = \phi(\boldsymbol{u}) \cdot \phi(\boldsymbol{v})$

- Could be used for many models:
 - □ SVM, perceptron, logistic regression, linear regression, etc.
- □ Kernel SVM is the best known one

 \Box Prove a kernel K(u, v) is valid by finding its ϕ function

□
$$K(u, v) = (u \cdot v + 1)^2$$
 is a valid kernel for 2-d points
□ Because

$$\Box K(\mathbf{u}, \mathbf{v}) = (u_1 v_1 + u_2 v_2 + 1)^2 = u_1^2 v_1^2 + u_2^2 v_2^2 + 2u_1 v_1 u_2 v_2 + 2u_1 v_1 + 2u_2 v_2 + 1$$

Let
$$\phi(\mathbf{x}) = \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 & \sqrt{2}x_1 & \sqrt{2}x_2 & 1 \end{bmatrix}$$

 $\Box \text{ Then } K(\boldsymbol{u}, \boldsymbol{v}) = \phi(\boldsymbol{u}) \cdot \phi(\boldsymbol{v})$

Review the lecture, background knowledge, etc.

Bagging

OOB score

SVM

Hard-margin & Soft-margin

Comparison with logistic regression, perceptron

□ Kernel method

Run ipython notebooks