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About the Workshops
7 sessions in total
Tue 12:00-13:00 AH211

Tue 12:00-13:00 AH108 *

Tue 13:00-14:00 AH210

Tue 16:15-17:15 AH109

Tue 17:15-18:15 AH236 *

Tue 18:15-19:15 AH236 *

Fri 14:15-15:15 AH211
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About the Workshops
Homepage
https://trevorcohn.github.io/comp90051-2017/workshops

Solutions will be released on next Friday (a week later).

https://trevorcohn.github.io/comp90051-2017/workshops
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1 Introduction; 
Probability theory

Probabilistic models;
Parameter fitting

2 Linear regression;
Intro to regularization

Logistic regression;
Basis expansion

3 Optimization; Regularization Perceptron
4 Backpropagation CNNs; Auto-encoders
5 Hard-margin SVMs Soft-margin SVMs 
6 Kernel methods Ensemble Learning 
7 Clustering EM algorithm
8 Dimensionality reduction; 

Principal component analysis
Multidimensional scaling; 
Spectral clustering

9 Bayesian fundamentals Bayesian inference with 
conjugate priors

10 PGMs, fundamentals Conditional independence
11 PGMs, inference Belief propagation
12 Statistical inference; Apps Subject review

Syllabus
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Outline
Review the lecture, background knowledge, etc.
Bagging
 OOB score

SVM
 Hard-margin & Soft-margin
 Comparison with logistic regression, perceptron

Kernel method

Run ipython notebooks
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Bagging (bootstrap aggregating)
A model averaging approach

Given a standard training set

Bootstrap the standard training set
To generate 𝑚𝑚 new training sets

Bootstrap = sample uniformly and with replacement

Train 𝑚𝑚 base models on the above 𝑚𝑚 training sets

Aggregate the 𝑚𝑚 base models to make predictions
By voting (classification) or averaging (regression)
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Sample without replacement

Sample with replacement

Iteration Choose from Generate Sample
1 [1 2 3 4 5 6 7 8 9] [4] [4]
2 [1 2 3 5 6 7 8 9] [1] [4,1]
3 [2 3 5 6 7 8 9] [3] [4,1,3]
4 [2 5 6 7 8 9] [2] [4,1,3,2]

Iteration Choose from Generate Sample
1 [1 2 3 4 5 6 7 8 9] [4] [4]
2 [1 2 3 4 5 6 7 8 9] [1] [4,1]
3 [1 2 3 4 5 6 7 8 9] [4] [4,1,4]
4 [1 2 3 4 5 6 7 8 9] [1] [4,1,4,1]
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Original dataset: { 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 }, 𝑖𝑖 = 1,2, … , 9

To make a prediction for 𝑥𝑥
�𝑦𝑦 =

1
4

{𝑚𝑚1.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑥𝑥 + 𝑚𝑚𝑚. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑥𝑥

+𝑚𝑚𝑚.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑥𝑥 + 𝑚𝑚𝑚. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑥𝑥 }

Model Training set
m1 [6 3 6 2 7 4 8 3 4]
m2 [4 7 1 5 4 5 1 1 4]
m3 [7 2 8 4 4 3 7 1 1]
m4 [8 2 9 3 9 3 2 5 9]
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OOB: out-of-bag

To make a prediction for 𝑥𝑥
�𝑦𝑦 =

1
4

{𝑚𝑚𝑚.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑥𝑥 + 𝑚𝑚𝑚. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑥𝑥

+𝑚𝑚𝑚.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑥𝑥 + 𝑚𝑚𝑚. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑥𝑥 }

Model Training set OOB
m1 [6 3 6 2 7 4 8 3 4] [1 5 9]
m2 [4 7 1 5 4 5 1 1 4] [2 3 6 8 9]
m3 [7 2 8 4 4 3 7 1 1] [5 6 9]
m4 [8 2 9 3 9 3 2 5 9] [1 4 6 7]
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�𝑦𝑦𝑖𝑖: aggregation of models haven’t seen 𝒙𝒙𝑖𝑖

�𝑦𝑦1 =
1
2

{𝑚𝑚𝑚. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙1 + 𝑚𝑚4.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙1 }

�𝑦𝑦2 = 𝑚𝑚2.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙2 �𝑦𝑦3 = 𝑚𝑚𝑚.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙3
�𝑦𝑦4 = 𝑚𝑚𝑚.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙4 �𝑦𝑦5 = 𝑚𝑚𝑚.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙5

�𝑦𝑦6 =
1
𝑚

{𝑚𝑚𝑚. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙6 + 𝑚𝑚𝑚. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙6 + 𝑚𝑚𝑚.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙6 }

�𝑦𝑦7 = 𝑚𝑚𝑚.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙7 �𝑦𝑦8 = 𝑚𝑚2.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙8

�𝑦𝑦9 =
1
𝑚

{𝑚𝑚1. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙9 + 𝑚𝑚2. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙9 + 𝑚𝑚𝑚. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝒙𝒙9 }

Model Training set OOB
m1 [6 3 6 2 7 4 8 3 4] [1 5 9]
m2 [4 7 1 5 4 5 1 1 4] [2 3 6 8 9]
m3 [7 2 8 4 4 3 7 1 1] [5 6 9]
m4 [8 2 9 3 9 3 2 5 9] [1 4 6 7]
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OOB score (regression)
OOB mean squared error

𝑀𝑀𝑀𝑀𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 =
1

𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡
�

𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 ∈𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

Mean squared error on a validation set

𝑀𝑀𝑀𝑀𝐸𝐸𝑣𝑣𝑡𝑡𝑣𝑣 =
1

𝐷𝐷𝑣𝑣𝑡𝑡𝑣𝑣
�

𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 ∈𝐷𝐷𝑣𝑣𝑡𝑡𝑣𝑣

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

OOB score is an alternative to the score on validation set
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Bagging
Can be used with any type of method

Usually applied to decision tree method

In sklearn:
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SVM
Hard-margin

min
𝒘𝒘,𝑏𝑏

1
2

𝑤𝑤 2

𝑠𝑠. 𝑝𝑝. 𝑦𝑦𝑖𝑖 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 1

Soft-margin

min
𝒘𝒘,𝑏𝑏

1
2

𝑤𝑤 2 + 𝐶𝐶�
𝑖𝑖=0

𝑡𝑡

max 0, 1 − 𝑦𝑦𝑖𝑖 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏

Hard-margin  𝐶𝐶 → +∞
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SVM - different C values



COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

SVM and Perceptron
𝑠𝑠𝑖𝑖 = 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏

Hinge loss

𝐿𝐿 𝒙𝒙𝑖𝑖 , 𝑦𝑦𝑖𝑖 = max 0, 1 − 𝑦𝑦𝑖𝑖𝑠𝑠𝑖𝑖

Perceptron loss

𝐿𝐿 𝒙𝒙𝑖𝑖 , 𝑦𝑦𝑖𝑖 = max 0,−𝑦𝑦𝑖𝑖𝑠𝑠𝑖𝑖
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Logistic regression (binary classification)
𝑠𝑠𝑖𝑖 = 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏

Log-loss when 𝑦𝑦 ∈ {0, 1}

�𝑦𝑦𝑖𝑖 = 𝑝𝑝 𝑦𝑦 = 1|𝒙𝒙 = 𝒙𝒙𝑖𝑖 =
1

1 + 𝑝𝑝−𝑠𝑠𝑖𝑖

𝐿𝐿 𝒙𝒙𝑖𝑖 , 𝑦𝑦𝑖𝑖 = − 1 − 𝑦𝑦𝑖𝑖 log 1 − �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖 log �𝑦𝑦𝑖𝑖

Log-loss when 𝑦𝑦 ∈ {−1, +1}

𝑝𝑝 𝑦𝑦|𝒙𝒙 = 𝒙𝒙𝑖𝑖 =
1

1 + 𝑝𝑝−𝑦𝑦𝑠𝑠𝑖𝑖

𝐿𝐿 𝒙𝒙𝑖𝑖 , 𝑦𝑦𝑖𝑖 = − log𝑝𝑝 𝑦𝑦 = 𝑦𝑦𝑖𝑖|𝒙𝒙 = 𝒙𝒙𝑖𝑖 = log 1 + 𝑝𝑝−𝑦𝑦𝑖𝑖𝑠𝑠𝑖𝑖
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Loss function for an example 𝒙𝒙,𝑦𝑦
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Kernel method
A kernel function is
a similarity function over pairs of raw data points

 the dot product of a pair of transformed data points

𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝜙𝜙 𝒖𝒖 ⋅ 𝜙𝜙 𝒗𝒗

Could be used for many models:
SVM, perceptron, logistic regression, linear regression, etc.

Kernel SVM is the best known one



COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Kernel method
Prove a kernel 𝐾𝐾(𝒖𝒖,𝒗𝒗) is valid by finding its 𝜙𝜙 function

𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝒖𝒖 ⋅ 𝒗𝒗 + 1 2 is a valid kernel for 2-d points

Because

𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝑢𝑢1𝑣𝑣1 + 𝑢𝑢2𝑣𝑣2 + 1 2 = 𝑢𝑢12𝑣𝑣12 + 𝑢𝑢22𝑣𝑣22 + 2𝑢𝑢1𝑣𝑣1𝑢𝑢2𝑣𝑣2 +
2𝑢𝑢1𝑣𝑣1 + 2𝑢𝑢2𝑣𝑣2 + 1

Let 𝜙𝜙 𝒙𝒙 = 𝑥𝑥12 𝑥𝑥22 2𝑥𝑥1𝑥𝑥2 2𝑥𝑥1 2𝑥𝑥2 1

Then 𝐾𝐾 𝒖𝒖,𝒗𝒗 = 𝜙𝜙 𝒖𝒖 ⋅ 𝜙𝜙 𝒗𝒗
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