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About the Workshops

17 sessions in total

1 Tue 12:00-13:00 AH211
J Tue 12:00-13:00 AH108 *
] Tue 13:00-14:00 AH210
1 Tue 16:15-17:15 AH109
JTue 17:15-18:15 AH236 *
J Tue 18:15-19:15 AH236 *
J Fri114:15-15:15 AH211



About the Workshops

I Homepage
1 https://trevorcohn.github.10/comp90051-2017/workshops

1 Solutions will be released on next Friday (a week later).


https://trevorcohn.github.io/comp90051-2017/workshops

Syllabus

1 |Introduction; Probabilistic models;
Probability theory Parameter fitting

2 | Linear regression; _ogistic regression;
Intro to regularization Basis expansion

3 | Optimization; Regularization Perceptron

4 | Backpropagation CNNs; Auto-encoders

5 |Hard-margin SVMs Soft-margin SVMs

6 |Additional topics Kernel methods

7 |Unsupervised learning Unsupervised learning

8 |Dimensionality reduction; Multidimensional scaling;
Principal component analysis |Spectral clustering

9 |Bayesian fundamentals Bayesian inference with

conjugate priors

10 |PGMs, fundamentals Conditional independence

11 |PGMs, inference Belief propagation

12 |Statistical inference; Apps Subject review
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Outline

JReview the lecture, background knowledge, etc.
J Supervised learning as an optimization problem
1 Perceptron update rule & loss function

) Logistic regression

! Predict function

1 Log loss (a.k.a. cross entropy)

_J Notebook tasks

1 Task 1: Logistic regression

1 Task 2: Perceptron classifier
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Supervised learning as an optimization problem

JDataset

) Preprocessing / normalization / feature selection

. Split into train*/test, where test served as the held-out set

) Split train® into train/validation (or k folds train/validation, CV)

JModel / Objective function

) Parameters, solved either analytically or by an optimizer

) Solved on the training set (or training sets in k folds, CV)

) Hyper-parameters, e.g. regularization parameter

) Selected on the validation set (or validation sets in k folds, CV)

J Evaluation on the held-out set



Supervised learning as an optimization problem

JDataset

) Preprocessing / normalization / feature selection

. Split into train*/test, where test served as the held-out set

JModel / Objective function

) Parameters, solved either analytically or by an optimizer

1 Solved on the training set*

J Evaluation on the held-out set



How to solve an optimization problem?

1 Analytic solution = solve it by a formula

D min||[Xw—y|l5 +A|wl||5, 1=20 > w'=X'X+A)"XTy
w

I Iterative methods = solve it by an optimization algorithm

) To minimize an objective

! Coordinate descent

1 Gradient-based optimization algorithms (optimizers)
J Simplest: gradient descent & stochastic gradient descent
J BFGS (in 4a_logistic regression.ipynb)
J Many more in packages...

1 To maximize an objective

) Convert it to an equivalent minimization problem



I Linear regression has an analytic solution (with L2)

1 Perceptron has its own update rule

! can be interpreted as using stochastic gradient descent
(with an appropriate loss function defined)

! Gradient-based optimizers can be used for
) Linear regression
) Support vector machines

J Logistic regression, neural networks

1 Deep neural networks are usually constructed and
optimized using special packages...



Gradient-based optimizers in

e tf.train.Optimizer

e tf.train.GradientDescentOptimizer

e tf.train.AdadeltaOptimizer

e tf.train.AdagradOptimizer

e tf.train.AdagradDAOptimizer

o tf.train.MomentumOptimizer

e tf.train.AdamOptimizer

e tf.train.FtrlOptimizer

e tf.train.ProximalGradientDescentOptimizer
e tf.train.ProximalAdagradOptimizer

e tf.train.RMSPropOptimizer

https://www.tensorflow.org/api guides/python/train
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https://www.tensorflow.org/api_guides/python/train

Gradient-based optimizers In PYTHRCH

class torch.optim.Optimizer(params, defaults)source]

class torch.optim.Adadelta(params, Ir=1.0, rho=0.9, eps=1e-06, weight decay=0)[source]

class torch.optim.Adagrad(params, Ir=0.01, Ir decay=0, weight decay=0)[source]

class torch.optim.Adam(params, Ir=0.001, betas=(0.9, 0.999), eps=1e-08, weight decay=0)[source]

class torch.optim.Adamax(params, Ir=0.002, betas=(0.9, 0.999), eps=1e-08,
weight decay=0)[source]

class torch.optim.ASGD(params, Ir=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0,
weight decay=0)[source]

class torch.optim.LBFGS(params, Ir=1, max _iter=20, max eval=None, tolerance grad=1e-03,
tolerance change=1e-09, history size=100, line _search fn=None)[source]

class torch.optim.RMSprop(params, Ir=0.01, alpha=0.99, eps=1e-08,
weight decay=0, momentum=0, centered=False)[source]

class torch.optim.Rprop(params, Ir=0.01, etas=(0.5, 1.2), step sizes=(1e-06, 50))[source]

class torch.optim.SGD(params, Ir=<object object>, momentum=0, dampening=0,
weight decay=0, nesterov=False)[source]

http://pvtorch.org/docs/master/optim.html#algorithms
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https://www.tensorflow.org/api_guides/python/train
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! Predict function
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Perceptron update rule (2-D points)

1 Data points

Dxl — :1 xl’l xljz: 93’1 — ——1, Xy = :1 x2,1 xz’z:eyz g |

dx;=[1 X371 X32]2y3=—1,x,=[1 Xa1 ZXs2]2y,=-1

I Model parameters

dw =W

J Decision function
dfgw) =xw = xowy + x;wy + xoWw,

J Predict +1 if f(x;w) > 0, predict —11f f(x;w) < 0



Perceptron update rule (2-D points)

I Iterate over all the points
J Current point i1s x;, and its label 1s y;
J Call decision function s = f(x;; w) = x;w

J Predict y; as +1ifs >0,as —11fs <0

JIfy; # 9

fwg)lew — W(c))ld 1+ Xi,o
A Ify; =41, weW =wold + xI or S wieW = wf'? + x; 4
wE = wgd 4 x,

new __ old
Wy = Wo  —Xio
dIfy; =—1,weW =wold — x[ ord wie¥ = wd — x;

new __ old
W = Wy — Xi»



Suppose x; IS misclassified

1This means y; = +1, §; = =1, s = f(x; wo'?) = x; w4 < 0

1 Apply the update rule:
dwnew = wold 4 xT
1 How does s change?
dsmeW = x,wW = x, (WOl + xT) = x, w4 + x,x] > 50l
JWe hope s > 0 (because y; = +1)
J After updating w, s™%W > s%d "W may still < 0

1 But it improves a bit (at least for x;)



Suppose x, IS misclassified

_ITh].S means y3 — _1, 5;3 — +1, S = f(xg;WOld) — x3WOld > 0

1 Apply the update rule:

Jwnew = yold _ x’g
1 How does s change?

] gnew — xSW‘new = X3 (Wold _ x%‘) — x3w01d _ x3x§ < gold
JWe hope s < 0 (because y; = —1)
J After updating w, s™% < s°4 ™Y may still > 0

JBut it improves a bit (at least for x5)



A uniform update rule

) For misclassified positive instance x, y = +1, hope s > 0

dwneW = wold + xT to increase s = f(x; w) = xw

J For misclassified negative instance x, y = —1, hope s < 0

dwnew = wold — xT to decrease s = f(x; w) = xw

J A uniform update rule:

_ For misclassified instance x, w™®" = w°'? + yxT so that
Js=f(x;w) = xwis increased if y = +1

ds=f(x;w) =xwis decreased if y = —1



Perceptron update rule (2-D points)

I Iterate over all the points
J Current point i1s x;, and its label 1s y;
J Call decision function s = f(x;; w) = x;w
J Predict y; as+1i1fs>0,as —11fs <0
JIfy; # i

f new __ old
Wo " =Wy Tt YXio

new

new _ y,,0ld T — ,old
d wheW = wo +yx;, or Wi = wi® +yx; 4

new _ .,,old
W2 =W T VX




Perceptron update rule (2-D points)

I Iterate over all the points

J Current point i1s x;, and its label 1s y;

J Call decision function s = f(x;; w) = x;w

J Predict y; as +1ifs >0,as —11fs <0
D]:fyl #:5;1 <:>yl’5;l =—1,+1 OI’+1,—1 <:>yl5;l <O<:>ylS<O
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Wo " =Wy Tt YXio

new
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Perceptron update rule (2-D points)

I Iterate over all the points
J Current point i1s x;, and its label 1s y;

J If misclassified & yf(x;w) = yx,w <0

[ new _ ..old
Wo ™" =Wy T YXio

new _ ,,0ld T new _ ,,,old
J wheW = wot + yx;, or { wi = wit + yx; 4

W = wit + yx;
1 The update rule for implementation

JWe can further define a loss function, but only for
theoretic analysis.



Define a loss function

) For misclassified instance x, w*¥ = w°'® + yxT so that
Js=f(x;w) =xwisincreasedif y = +1

Js=f(x;w) = xwis decreased if y = —1

) Loss functions should be minimized

I Define L(f(x;w),y) = —yf(x; w) for misclassified x
J—yf(x;w) = —xw is decreased if y = +1
J—yf(x;w) = +xwis decreased if y = —1

JSo L(f(x;w),y) = —yf(x;w) decreases after updating w



Gradient of the loss function

JL(f(xw),y) = —yf(x;w) = —y(xowy + x,w; + x,w5)

dL dL L

aw, = —VXo E = VX1 ow, = — VX2

6W0

X
8W1 '
6W2

1 So




The uniform update rule

) For misclassified instance x, w™W = wo'¢ + yxT

! For misclassified instance x, the loss function 1s defined
as L(f(x;w),y) = —yf(x; w)
oL .

ow 7

1 So the update rule can be written as

oL
whew — yold 4+ yxT — wold _
ow



Perceptron update rule (2-D points)

J Define L(f(x;w),y) = —yf (x; w) for misclassified instances

I Iterate over all the points

) Current point is x;, and its label 1s y;

J If misclassified & yf(x;w) = yx;w <0 = L(f(x;w),y) >0

old _ﬁ

whew —
ow



Perceptron - stochastic gradient descent
1 Define

L(f(x;w),y) = {—yf(ox; w) if L(f(x;w),y) > 0 < misclassified

otherwise
) Then
oL _ :—yxT if L(f(x;w),y) > 0<% misclassified
ow [ 0 otherwise

IIterate over all the points
) Current point is x;, and its label 1s y;

1 Apply the update rule

old _a_L

whew —
ow



Outline
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J Supervised learning as an optimization problem
1 Perceptron update rule & loss function

J Logistic regression

! Predict function

1 Log loss (a.k.a. cross entropy)

_J Notebook tasks

1 Task 1: Logistic regression
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Logistic regression (2-D points, 3 classes)
1 Data points

dx; =1 %11 X12]2y1=0,x, =[1 X1 Xp2]2y, =

dx;=[1 %31 X32]2y:=2,x,=[1 X341 X42]>y, =2

I Model parameters

Woo Wop1 Wp,2T
AW =|Wo Wi W3] =|Wio W11 Wiy
Woo W21 Wpo)

- Decision function, predict x as class j if s; 1s the largest.

i AT
Awy1! XoWop,0 T X1W1 09 T X2W2 o Sol"

d f(x;w) = xW = | XxW, XoWo,1 T X1Wq11 T XaWa g
XW; | XoWp2 T X1 W1 T XoW3 o 52

1
0
—




Logistic regression (2-D points, 3 classes)

I Model parameters

AW =Wy Wi W3] =

Wo.0
W10

Wro

Wo 1
W11
Wj 1

Wo 2~
W1 2
W32

- Decision function, predict x as class j if s; 1s the largest.

d f(x;w) = xW = | XxWyq

AW,

XW; |

T

1 Output the distribution

Dp(ylg W) = ——

esS0+eS14e52

[eSo

XoWpo T X1W1 09 T X2W2 o

XoWp1 T X1W11 T Xo2W3q

XoWo,2 T X1Wqy2 T XoW3 2|
esl eSZ] 0.4 [eSO esl

T




Logistic regression (2-D points, 3 classes)

- Decision function, predict x as class j if s; 1s the largest.

_ T i e 1 17 - 1T

XW, XoWp,o T X1W10 T X2W32 0 50
d f(x;w) =xW = |XWq| = |XoWo1 +X1W11 T XWo 1| =[S1

AW XoWp2 T X1W1 2 T XoW3 - S2 ]

1 Output the distribution

1
eS0+eS14e52

dplx W) =

leSo eS1 eSz] ot [eS0 eS1 eS52]

1 The log-loss

L(x;, y;; W) = —logp(y = yilx = x;; W) = —log
= —s,,. + log(e®® + e®1 + e°2)

eS0 4+ e51 4 es2



og-loss for each data point & mean loss

i Vi j =%(y ﬁ‘i i ad I/l;)z , log-loss
1 0 0.6 0.3 0.1
2 1 0.2 0.7 0.1
3 2 0.5 0.3 0.2
il 2 0.3 0.3 0.4
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Log-loss for each data point & mean loss

i Vi j :%(y i‘i i ot M;)z , log-loss
1 0 0.6 0.3 0.1 —log 0.6
2 1 0.2 0.7 0.1 —log 0.7
3 2 0.5 0.3 0.2 —log 0.2
4 2 0.3 0.3 0.4  —log0.4

1 Mean loss (without regularization)

4
1
L = 12 —logp(y = yilx = x;; W)
=1

1

— —Z(log 0.6 +10g 0.7 +1og 0.2 + log 0.4)




Log-loss for each data point & mean loss

i Vi j :%(y i‘i i ot M;.)z 2 l log-loss
1 0 0.67 0.3 0.1 —log 0.6
2 1 0.2 0.717 0.1 —log 0.7
3 2 0.5 0.3 0.27 —log 0.2
4 2 0.3 0.3 047 —log0.4

1 Mean loss (without regularization)

4
1
VL = ZZ —logp(y = yilx = x;; W)
=1

1

— —Z(log 0.6 +10g 0.7 +1og 0.2 + log 0.4)
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