COMP90051

Workshop Week 04

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

About the Workshops

17 sessions in total

1 Tue 12:00-13:00 AH211
J Tue 12:00-13:00 AH108 *
] Tue 13:00-14:00 AH210
1 Tue 16:15-17:15 AH109
JTue 17:15-18:15 AH236 *
J Tue 18:15-19:15 AH236 *
J Fri114:15-15:15 AH211

About the Workshops

I Homepage
1 https://trevorcohn.github.10/comp90051-2017/workshops

1 Solutions will be released on next Friday (a week later).

https://trevorcohn.github.io/comp90051-2017/workshops

Syllabus

1 |Introduction; Probabilistic models;
Probability theory Parameter fitting

2 | Linear regression; _ogistic regression;
Intro to regularization Basis expansion

3 | Optimization; Regularization Perceptron

4 | Backpropagation CNNs; Auto-encoders

5 |Hard-margin SVMs Soft-margin SVMs

6 |Additional topics Kernel methods

7 |Unsupervised learning Unsupervised learning

8 |Dimensionality reduction; Multidimensional scaling;
Principal component analysis |Spectral clustering

9 |Bayesian fundamentals Bayesian inference with

conjugate priors

10 |PGMs, fundamentals Conditional independence

11 |PGMs, inference Belief propagation

12 |Statistical inference; Apps Subject review

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Outline

JReview the lecture, background knowledge, etc.
J Supervised learning as an optimization problem
1 Perceptron update rule & loss function

) Logistic regression

! Predict function

1 Log loss (a.k.a. cross entropy)

_J Notebook tasks

1 Task 1: Logistic regression

1 Task 2: Perceptron classifier

Outline

JReview the lecture, background knowledge, etc.
J Supervised learning as an optimization problem
1 Perceptron update rule & loss function

) Logistic regression

! Predict function

1 Log loss (a.k.a. cross entropy)

_J Notebook tasks

1 Task 1: Logistic regression

1 Task 2: Perceptron classifier

Supervised learning as an optimization problem

JDataset

) Preprocessing / normalization / feature selection

. Split into train*/test, where test served as the held-out set

) Split train® into train/validation (or k folds train/validation, CV)

JModel / Objective function

) Parameters, solved either analytically or by an optimizer

) Solved on the training set (or training sets in k folds, CV)

) Hyper-parameters, e.g. regularization parameter

) Selected on the validation set (or validation sets in k folds, CV)

J Evaluation on the held-out set

Supervised learning as an optimization problem

JDataset

) Preprocessing / normalization / feature selection

. Split into train*/test, where test served as the held-out set

JModel / Objective function

) Parameters, solved either analytically or by an optimizer

1 Solved on the training set*

J Evaluation on the held-out set

How to solve an optimization problem?

1 Analytic solution = solve it by a formula

D min||[Xw—y|l5 +A|wl||5, 1=20 > w'=X'X+A)"XTy
w

I Iterative methods = solve it by an optimization algorithm

) To minimize an objective

! Coordinate descent

1 Gradient-based optimization algorithms (optimizers)
J Simplest: gradient descent & stochastic gradient descent
J BFGS (in 4a_logistic regression.ipynb)
J Many more in packages...

1 To maximize an objective

) Convert it to an equivalent minimization problem

I Linear regression has an analytic solution (with L2)

1 Perceptron has its own update rule

! can be interpreted as using stochastic gradient descent
(with an appropriate loss function defined)

! Gradient-based optimizers can be used for
) Linear regression
) Support vector machines

J Logistic regression, neural networks

1 Deep neural networks are usually constructed and
optimized using special packages...

Gradient-based optimizers in

e tf.train.Optimizer

e tf.train.GradientDescentOptimizer

e tf.train.AdadeltaOptimizer

e tf.train.AdagradOptimizer

e tf.train.AdagradDAOptimizer

o tf.train.MomentumOptimizer

e tf.train.AdamOptimizer

e tf.train.FtrlOptimizer

e tf.train.ProximalGradientDescentOptimizer
e tf.train.ProximalAdagradOptimizer

e tf.train.RMSPropOptimizer

https://www.tensorflow.org/api guides/python/train

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

https://www.tensorflow.org/api_guides/python/train

Gradient-based optimizers In PYTHRCH

class torch.optim.Optimizer(params, defaults)source]

class torch.optim.Adadelta(params, Ir=1.0, rho=0.9, eps=1e-06, weight decay=0)[source]

class torch.optim.Adagrad(params, Ir=0.01, Ir decay=0, weight decay=0)[source]

class torch.optim.Adam(params, Ir=0.001, betas=(0.9, 0.999), eps=1e-08, weight decay=0)[source]

class torch.optim.Adamax(params, Ir=0.002, betas=(0.9, 0.999), eps=1e-08,
weight decay=0)[source]

class torch.optim.ASGD(params, Ir=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0,
weight decay=0)[source]

class torch.optim.LBFGS(params, Ir=1, max _iter=20, max eval=None, tolerance grad=1e-03,
tolerance change=1e-09, history size=100, line _search fn=None)[source]

class torch.optim.RMSprop(params, Ir=0.01, alpha=0.99, eps=1e-08,
weight decay=0, momentum=0, centered=False)[source]

class torch.optim.Rprop(params, Ir=0.01, etas=(0.5, 1.2), step sizes=(1e-06, 50))[source]

class torch.optim.SGD(params, Ir=<object object>, momentum=0, dampening=0,
weight decay=0, nesterov=False)[source]

http://pvtorch.org/docs/master/optim.html#algorithms
COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

https://www.tensorflow.org/api_guides/python/train

Outline

JReview the lecture, background knowledge, etc.
J Supervised learning as an optimization problem
. Perceptron update rule & loss function

) Logistic regression

! Predict function

1 Log loss (a.k.a. cross entropy)

_J Notebook tasks

1 Task 1: Logistic regression

1 Task 2: Perceptron classifier

Perceptron update rule (2-D points)

1 Data points

Dxl — :1 xl’l xljz: 93’1 — ——1, Xy = :1 x2,1 xz’z:eyz g |

dx;=[1 X371 X32]2y3=—1,x,=[1 Xa1 ZXs2]2y,=-1

I Model parameters

dw =W

J Decision function
dfgw) =xw = xowy + x;wy + xoWw,

J Predict +1 if f(x;w) > 0, predict —11f f(x;w) < 0

Perceptron update rule (2-D points)

I Iterate over all the points
J Current point i1s x;, and its label 1s y;
J Call decision function s = f(x;; w) = x;w

J Predict y; as +1ifs >0,as —11fs <0

JIfy; # 9

fwg)lew — W(c))ld 1+ Xi,o
A Ify; =41, weW =wold + xI or S wieW = wf'? + x; 4
wE = wgd 4 x,

new __ old
Wy = Wo —Xio
dIfy; =—1,weW =wold — x[ord wie¥ = wd — x;

new __ old
W = Wy — Xi»

Suppose x; IS misclassified

1This means y; = +1, §; = =1, s = f(x; wo'?) = x; w4 < 0

1 Apply the update rule:
dwnew = wold 4 xT
1 How does s change?
dsmeW = x,wW = x, (WOl + xT) = x, w4 + x,x] > 50l
JWe hope s > 0 (because y; = +1)
J After updating w, s™%W > s%d "W may still < 0

1 But it improves a bit (at least for x;)

Suppose x, IS misclassified

_ITh].S means y3 — _1, 5;3 — +1, S = f(xg;WOld) — x3WOld > 0

1 Apply the update rule:

Jwnew = yold _ x’g
1 How does s change?

] gnew — xSW‘new = X3 (Wold _ x%‘) — x3w01d _ x3x§ < gold
JWe hope s < 0 (because y; = —1)
J After updating w, s™% < s°4 ™Y may still > 0

JBut it improves a bit (at least for x5)

A uniform update rule

) For misclassified positive instance x, y = +1, hope s > 0

dwneW = wold + xT to increase s = f(x; w) = xw

J For misclassified negative instance x, y = —1, hope s < 0

dwnew = wold — xT to decrease s = f(x; w) = xw

J A uniform update rule:

_ For misclassified instance x, w™®" = w°'? + yxT so that
Js=f(x;w) = xwis increased if y = +1

ds=f(x;w) =xwis decreased if y = —1

Perceptron update rule (2-D points)

I Iterate over all the points
J Current point i1s x;, and its label 1s y;
J Call decision function s = f(x;; w) = x;w
J Predict y; as+1i1fs>0,as —11fs <0
JIfy; # i

f new __ old
Wo " =Wy Tt YXio

new

new _ y,,0ld T — ,old
d wheW = wo +yx;, or Wi = wi® +yx; 4

new _ .,,old
W2 =W T VX

Perceptron update rule (2-D points)

I Iterate over all the points

J Current point i1s x;, and its label 1s y;

J Call decision function s = f(x;; w) = x;w

J Predict y; as +1ifs >0,as —11fs <0
D]:fyl #:5;1 <:>yl’5;l =—1,+1 OI’+1,—1 <:>yl5;l <O<:>ylS<O

f new __ old
Wo " =Wy Tt YXio

new

new _ y,,0ld T — ,old
d wheW = wo +yx;, or Wi = wi® +yx; 4

new _ .,,old
W2 =W T VX

Perceptron update rule (2-D points)

I Iterate over all the points
J Current point i1s x;, and its label 1s y;

J If misclassified & yf(x;w) = yx,w <0

[new _ ..old
Wo ™" =Wy T YXio

new _ ,,0ld T new _ ,,,old
J wheW = wot + yx;, or { wi = wit + yx; 4

W = wit + yx;
1 The update rule for implementation

JWe can further define a loss function, but only for
theoretic analysis.

Define a loss function

) For misclassified instance x, w*¥ = w°'® + yxT so that
Js=f(x;w) =xwisincreasedif y = +1

Js=f(x;w) = xwis decreased if y = —1

) Loss functions should be minimized

I Define L(f(x;w),y) = —yf(x; w) for misclassified x
J—yf(x;w) = —xw is decreased if y = +1
J—yf(x;w) = +xwis decreased if y = —1

JSo L(f(x;w),y) = —yf(x;w) decreases after updating w

Gradient of the loss function

JL(f(xw),y) = —yf(x;w) = —y(xowy + x,w; + x,w5)

dL dL L

aw, = —VXo E = VX1 ow, = — VX2

6W0

X
8W1 '
6W2

1 So

The uniform update rule

) For misclassified instance x, w™W = wo'¢ + yxT

! For misclassified instance x, the loss function 1s defined
as L(f(x;w),y) = —yf(x; w)
oL .

ow 7

1 So the update rule can be written as

oL
whew — yold 4+ yxT — wold _
ow

Perceptron update rule (2-D points)

J Define L(f(x;w),y) = —yf (x; w) for misclassified instances

I Iterate over all the points

) Current point is x;, and its label 1s y;

J If misclassified & yf(x;w) = yx;w <0 = L(f(x;w),y) >0

old _ﬁ

whew —
ow

Perceptron - stochastic gradient descent
1 Define

L(f(x;w),y) = {—yf(ox; w) if L(f(x;w),y) > 0 < misclassified

otherwise
) Then
oL _ :—yxT if L(f(x;w),y) > 0<% misclassified
ow [0 otherwise

IIterate over all the points
) Current point is x;, and its label 1s y;

1 Apply the update rule

old _a_L

whew —
ow

Outline

JReview the lecture, background knowledge, etc.
J Supervised learning as an optimization problem
1 Perceptron update rule & loss function

J Logistic regression

! Predict function

1 Log loss (a.k.a. cross entropy)

_J Notebook tasks

1 Task 1: Logistic regression

1 Task 2: Perceptron classifier

Logistic regression (2-D points, 3 classes)
1 Data points

dx; =1 %11 X12]2y1=0,x, =[1 X1 Xp2]2y, =

dx;=[1 %31 X32]2y:=2,x,=[1 X341 X42]>y, =2

I Model parameters

Woo Wop1 Wp,2T
AW =|Wo Wi W3] =|Wio W11 Wiy
Woo W21 Wpo)

- Decision function, predict x as class j if s; 1s the largest.

i AT
Awy1! XoWop,0 T X1W1 09 T X2W2 o Sol"

d f(x;w) = xW = | XxW, XoWo,1 T X1Wq11 T XaWa g
XW; | XoWp2 T X1 W1 T XoW3 o 52

1
0
—

Logistic regression (2-D points, 3 classes)

I Model parameters

AW =Wy Wi W3] =

Wo.0
W10

Wro

Wo 1
W11
Wj 1

Wo 2~
W1 2
W32

- Decision function, predict x as class j if s; 1s the largest.

d f(x;w) = xW = | XxWyq

AW,

XW; |

T

1 Output the distribution

Dp(ylg W) = ——

esS0+eS14e52

[eSo

XoWpo T X1W1 09 T X2W2 o

XoWp1 T X1W11 T Xo2W3q

XoWo,2 T X1Wqy2 T XoW3 2|
esl eSZ] 0.4 [eSO esl

T

Logistic regression (2-D points, 3 classes)

- Decision function, predict x as class j if s; 1s the largest.

_ T i e 1 17 - 1T

XW, XoWp,o T X1W10 T X2W32 0 50
d f(x;w) =xW = |XWq| = |XoWo1 +X1W11 T XWo 1| =[S1

AW XoWp2 T X1W1 2 T XoW3 - S2]

1 Output the distribution

1
eS0+eS14e52

dplx W) =

leSo eS1 eSz] ot [eS0 eS1 eS52]

1 The log-loss

L(x;, y;; W) = —logp(y = yilx = x;; W) = —log
= —s,,. + log(e®® + e®1 + e°2)

eS0 4+ e51 4 es2

og-loss for each data point & mean loss

i Vi j =%(y ﬁ‘i i ad I/l;)z , log-loss
1 0 0.6 0.3 0.1
2 1 0.2 0.7 0.1
3 2 0.5 0.3 0.2
il 2 0.3 0.3 0.4

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Log-loss for each data point & mean loss

i Vi j :%(y i‘i i ot M;)z , log-loss
1 0 0.6 0.3 0.1 —log 0.6
2 1 0.2 0.7 0.1 —log 0.7
3 2 0.5 0.3 0.2 —log 0.2
4 2 0.3 0.3 0.4 —log0.4

1 Mean loss (without regularization)

4
1
L = 12 —logp(y = yilx = x;; W)
=1

1

— —Z(log 0.6 +10g 0.7 +1og 0.2 + log 0.4)

Log-loss for each data point & mean loss

i Vi j :%(y i‘i i ot M;.)z 2 l log-loss
1 0 0.67 0.3 0.1 —log 0.6
2 1 0.2 0.717 0.1 —log 0.7
3 2 0.5 0.3 0.27 —log 0.2
4 2 0.3 0.3 047 —log0.4

1 Mean loss (without regularization)

4
1
VL = ZZ —logp(y = yilx = x;; W)
=1

1

— —Z(log 0.6 +10g 0.7 +1og 0.2 + log 0.4)

Outline

JReview the lecture, background knowledge, etc.
J Supervised learning as an optimization problem
1 Perceptron update rule & loss function

) Logistic regression

! Predict function

1 Log loss (a.k.a. cross entropy)

1 Notebook tasks

1 Task 1: Logistic regression

1 Task 2: Perceptron classifier

	Workshop Week 04
	About the Workshops
	About the Workshops
	Syllabus
	Outline
	Outline
	Supervised learning as an optimization problem
	Supervised learning as an optimization problem
	How to solve an optimization problem?
	Slide Number 10
	Gradient-based optimizers in
	Gradient-based optimizers in
	Outline
	Perceptron update rule (2-D points)
	Perceptron update rule (2-D points)
	Suppose 𝒙 1 is misclassified
	Suppose 𝒙 3 is misclassified
	A uniform update rule
	Perceptron update rule (2-D points)
	Perceptron update rule (2-D points)
	Perceptron update rule (2-D points)
	Define a loss function
	Gradient of the loss function
	The uniform update rule
	Perceptron update rule (2-D points)
	Perceptron  stochastic gradient descent
	Outline
	Logistic regression (2-D points, 3 classes)
	Logistic regression (2-D points, 3 classes)
	Logistic regression (2-D points, 3 classes)
	Log-loss for each data point & mean loss
	Log-loss for each data point & mean loss
	Log-loss for each data point & mean loss
	Outline

