
COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Workshop Week 04
COMP90051

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

About the Workshops
7 sessions in total
Tue 12:00-13:00 AH211

Tue 12:00-13:00 AH108 *

Tue 13:00-14:00 AH210

Tue 16:15-17:15 AH109

Tue 17:15-18:15 AH236 *

Tue 18:15-19:15 AH236 *

Fri 14:15-15:15 AH211

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

About the Workshops
Homepage
https://trevorcohn.github.io/comp90051-2017/workshops

Solutions will be released on next Friday (a week later).

https://trevorcohn.github.io/comp90051-2017/workshops

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

1 Introduction;
Probability theory

Probabilistic models;
Parameter fitting

2 Linear regression;
Intro to regularization

Logistic regression;
Basis expansion

3 Optimization; Regularization Perceptron
4 Backpropagation CNNs; Auto-encoders
5 Hard-margin SVMs Soft-margin SVMs
6 Additional topics Kernel methods
7 Unsupervised learning Unsupervised learning
8 Dimensionality reduction;

Principal component analysis
Multidimensional scaling;
Spectral clustering

9 Bayesian fundamentals Bayesian inference with
conjugate priors

10 PGMs, fundamentals Conditional independence
11 PGMs, inference Belief propagation
12 Statistical inference; Apps Subject review

Syllabus

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Outline
Review the lecture, background knowledge, etc.
Supervised learning as an optimization problem

Perceptron update rule & loss function

Logistic regression
 Predict function
 Log loss (a.k.a. cross entropy)

Notebook tasks
Task 1: Logistic regression

Task 2: Perceptron classifier

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Outline
Review the lecture, background knowledge, etc.
Supervised learning as an optimization problem

Perceptron update rule & loss function

Logistic regression
 Predict function
 Log loss (a.k.a. cross entropy)

Notebook tasks
Task 1: Logistic regression

Task 2: Perceptron classifier

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Supervised learning as an optimization problem
Dataset
Preprocessing / normalization / feature selection

Split into train*/test, where test served as the held-out set
 Split train* into train/validation (or 𝑘𝑘 folds train/validation, CV)

Model / Objective function
Parameters, solved either analytically or by an optimizer
 Solved on the training set (or training sets in 𝑘𝑘 folds, CV)

Hyper-parameters, e.g. regularization parameter
 Selected on the validation set (or validation sets in 𝑘𝑘 folds, CV)

Evaluation on the held-out set

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Supervised learning as an optimization problem
Dataset
Preprocessing / normalization / feature selection

Split into train*/test, where test served as the held-out set

Model / Objective function
Parameters, solved either analytically or by an optimizer
 Solved on the training set*

Evaluation on the held-out set

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

How to solve an optimization problem?
Analytic solution solve it by a formula
min

𝒘𝒘
𝑿𝑿𝒘𝒘 − 𝒚𝒚 2

2 + 𝜆𝜆 𝒘𝒘 2
2 , 𝜆𝜆 ≥ 0 𝒘𝒘∗ = 𝑿𝑿𝑇𝑇𝑿𝑿 + 𝜆𝜆𝑰𝑰 −1𝑿𝑿𝑇𝑇𝒚𝒚

Iterative methods solve it by an optimization algorithm
To minimize an objective
 Coordinate descent
 Gradient-based optimization algorithms (optimizers)
 Simplest: gradient descent & stochastic gradient descent
 BFGS (in 4a_logistic_regression.ipynb)
 Many more in packages…

To maximize an objective
 Convert it to an equivalent minimization problem

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Linear regression has an analytic solution (with L2)

Perceptron has its own update rule
 can be interpreted as using stochastic gradient descent

(with an appropriate loss function defined)

Gradient-based optimizers can be used for
Linear regression

Support vector machines

Logistic regression, neural networks

Deep neural networks are usually constructed and
optimized using special packages…

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Gradient-based optimizers in

https://www.tensorflow.org/api_guides/python/train

https://www.tensorflow.org/api_guides/python/train

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Gradient-based optimizers in

http://pytorch.org/docs/master/optim.html#algorithms

https://www.tensorflow.org/api_guides/python/train

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Outline
Review the lecture, background knowledge, etc.
Supervised learning as an optimization problem

Perceptron update rule & loss function

Logistic regression
 Predict function
 Log loss (a.k.a. cross entropy)

Notebook tasks
Task 1: Logistic regression

Task 2: Perceptron classifier

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Perceptron update rule (2-D points)
Data points
𝒙𝒙1 = 1 𝑥𝑥1,1 𝑥𝑥1,2 𝑦𝑦1 = +1, 𝒙𝒙2 = 1 𝑥𝑥2,1 𝑥𝑥2,2 𝑦𝑦2 = +1

𝒙𝒙3 = 1 𝑥𝑥3,1 𝑥𝑥3,2 𝑦𝑦3 = −1, 𝒙𝒙4 = 1 𝑥𝑥4,1 𝑥𝑥4,2 𝑦𝑦4 = −1

Model parameters

𝒘𝒘 =
𝑤𝑤0
𝑤𝑤1
𝑤𝑤2

Decision function
𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒘𝒘 = 𝑥𝑥0𝑤𝑤0 + 𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2
Predict +1 if 𝑓𝑓 𝒙𝒙;𝒘𝒘 > 0 , predict −1 if 𝑓𝑓 𝒙𝒙;𝒘𝒘 < 0

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Perceptron update rule (2-D points)
 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
Call decision function 𝑠𝑠 = 𝑓𝑓 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝒙𝒙𝑖𝑖𝒘𝒘

Predict �𝑦𝑦𝑖𝑖 as +1 if 𝑠𝑠 > 0, as −1 if 𝑠𝑠 < 0

 If 𝑦𝑦𝑖𝑖 ≠ �𝑦𝑦𝑖𝑖

 If 𝑦𝑦𝑖𝑖 = +1 , 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙𝑖𝑖𝑇𝑇, or
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑥𝑥𝑖𝑖,2

 If 𝑦𝑦𝑖𝑖 = −1 , 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙𝑖𝑖𝑇𝑇, or
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑥𝑥𝑖𝑖,2

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Suppose 𝒙𝒙1 is misclassified
This means 𝑦𝑦1 = +1, �𝑦𝑦1 = −1, 𝑠𝑠 = 𝑓𝑓 𝒙𝒙1;𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒙𝒙1𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 < 0

Apply the update rule:
𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙1𝑇𝑇

How does 𝑠𝑠 change?
 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙1𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙1 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙1𝑇𝑇 = 𝒙𝒙1𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙1𝒙𝒙1𝑇𝑇 > 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜

We hope 𝑠𝑠 > 0 (because 𝑦𝑦1 = +1)

After updating 𝒘𝒘, 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 > 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 may still < 0

But it improves a bit (at least for 𝒙𝒙1)

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Suppose 𝒙𝒙3 is misclassified
This means 𝑦𝑦3 = −1, �𝑦𝑦3 = +1, 𝑠𝑠 = 𝑓𝑓 𝒙𝒙3;𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒙𝒙3𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 > 0

Apply the update rule:
𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙3𝑇𝑇

How does 𝑠𝑠 change?
 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙3𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙3 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙3𝑇𝑇 = 𝒙𝒙3𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙3𝒙𝒙3𝑇𝑇 < 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜

We hope 𝑠𝑠 < 0 (because 𝑦𝑦3 = −1)

After updating 𝒘𝒘, 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 < 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 may still > 0

But it improves a bit (at least for 𝒙𝒙3)

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

A uniform update rule
For misclassified positive instance 𝒙𝒙, 𝑦𝑦 = +1, hope 𝑠𝑠 > 0

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙𝑇𝑇 to increase 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒘𝒘

For misclassified negative instance 𝒙𝒙, 𝑦𝑦 = −1, hope 𝑠𝑠 < 0

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙𝑇𝑇 to decrease 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒘𝒘

A uniform update rule:

For misclassified instance 𝒙𝒙, 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑇𝑇 so that
 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒘𝒘 is increased if 𝑦𝑦 = +1

 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒘𝒘 is decreased if 𝑦𝑦 = −1

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Perceptron update rule (2-D points)
 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
Call decision function 𝑠𝑠 = 𝑓𝑓 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝒙𝒙𝑖𝑖𝒘𝒘

Predict �𝑦𝑦𝑖𝑖 as +1 if 𝑠𝑠 > 0, as −1 if 𝑠𝑠 < 0

 If 𝑦𝑦𝑖𝑖 ≠ �𝑦𝑦𝑖𝑖

 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑖𝑖𝑇𝑇, or
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,2

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Perceptron update rule (2-D points)
 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
Call decision function 𝑠𝑠 = 𝑓𝑓 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝒙𝒙𝑖𝑖𝒘𝒘

Predict �𝑦𝑦𝑖𝑖 as +1 if 𝑠𝑠 > 0, as −1 if 𝑠𝑠 < 0

 If 𝑦𝑦𝑖𝑖 ≠ �𝑦𝑦𝑖𝑖 𝑦𝑦𝑖𝑖 , �𝑦𝑦𝑖𝑖 = −1, +1 or +1,−1 𝑦𝑦𝑖𝑖 �𝑦𝑦𝑖𝑖 < 0 𝑦𝑦𝑖𝑖𝑠𝑠 < 0

 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑖𝑖𝑇𝑇, or
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,2

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Perceptron update rule (2-D points)
 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
 If misclassified 𝑦𝑦𝑓𝑓 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝑦𝑦𝒙𝒙𝑖𝑖𝒘𝒘 < 0

 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑖𝑖𝑇𝑇, or
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,2

The update rule for implementation

We can further define a loss function, but only for
theoretic analysis.

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Define a loss function
For misclassified instance 𝒙𝒙, 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑇𝑇 so that
 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒘𝒘 is increased if 𝑦𝑦 = +1

 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒘𝒘 is decreased if 𝑦𝑦 = −1

Loss functions should be minimized

Define 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑓𝑓(𝒙𝒙;𝒘𝒘) for misclassified 𝒙𝒙
−𝑦𝑦𝑓𝑓 𝒙𝒙;𝒘𝒘 = −𝒙𝒙𝒘𝒘 is decreased if 𝑦𝑦 = +1

−𝑦𝑦𝑓𝑓 𝒙𝒙;𝒘𝒘 = +𝒙𝒙𝒘𝒘 is decreased if 𝑦𝑦 = −1

So 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑓𝑓(𝒙𝒙;𝒘𝒘) decreases after updating 𝒘𝒘

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Gradient of the loss function
𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑓𝑓 𝒙𝒙;𝒘𝒘 = −𝑦𝑦(𝑥𝑥0𝑤𝑤0 + 𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2)

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤0

= −𝑦𝑦𝑥𝑥0
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤1

= −𝑦𝑦𝑥𝑥1
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤2

= −𝑦𝑦𝑥𝑥2

So

𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

=

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤0
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤1
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤2

= −𝑦𝑦
𝑥𝑥0
𝑥𝑥1
𝑥𝑥2

= −𝑦𝑦𝒙𝒙𝑇𝑇

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

The uniform update rule
For misclassified instance 𝒙𝒙, 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑇𝑇

For misclassified instance 𝒙𝒙, the loss function is defined
as 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑓𝑓 𝒙𝒙;𝒘𝒘

𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

= −𝑦𝑦𝒙𝒙𝑇𝑇

So the update rule can be written as

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑇𝑇 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 −
𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Perceptron update rule (2-D points)
Define 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 ,𝑦𝑦 = −𝑦𝑦𝑓𝑓 𝒙𝒙;𝒘𝒘 for misclassified instances

 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
 If misclassified 𝑦𝑦𝑓𝑓 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝑦𝑦𝒙𝒙𝑖𝑖𝒘𝒘 < 0 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 > 0

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 −
𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Perceptron stochastic gradient descent
Define

𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = �−𝑦𝑦𝑓𝑓 𝒙𝒙;𝒘𝒘 if 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 > 0 misclassified
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑜𝑜𝑠𝑠𝑜𝑜

Then
𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

= �−𝑦𝑦𝒙𝒙
𝑇𝑇 if 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 > 0 misclassified

𝟎𝟎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤𝑜𝑜𝑠𝑠𝑜𝑜

Iterate over all the points
Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
Apply the update rule

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 −
𝜕𝜕𝐿𝐿
𝜕𝜕𝒘𝒘

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Outline
Review the lecture, background knowledge, etc.
Supervised learning as an optimization problem

Perceptron update rule & loss function

Logistic regression
 Predict function
 Log loss (a.k.a. cross entropy)

Notebook tasks
Task 1: Logistic regression

Task 2: Perceptron classifier

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Logistic regression (2-D points, 3 classes)
Data points
𝒙𝒙1 = 1 𝑥𝑥1,1 𝑥𝑥1,2 𝑦𝑦1 = 0, 𝒙𝒙2 = 1 𝑥𝑥2,1 𝑥𝑥2,2 𝑦𝑦2 = 1

𝒙𝒙3 = 1 𝑥𝑥3,1 𝑥𝑥3,2 𝑦𝑦3 = 2, 𝒙𝒙4 = 1 𝑥𝑥4,1 𝑥𝑥4,2 𝑦𝑦4 = 2

Model parameters

𝑾𝑾 = 𝒘𝒘0 𝒘𝒘1 𝒘𝒘2 =
𝑤𝑤0,0 𝑤𝑤0,1 𝑤𝑤0,2
𝑤𝑤1,0 𝑤𝑤1,1 𝑤𝑤1,2
𝑤𝑤2,0 𝑤𝑤2,1 𝑤𝑤2,2

Decision function, predict 𝒙𝒙 as class 𝑗𝑗 if 𝑠𝑠𝑗𝑗 is the largest.

 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝑾𝑾 =
𝒙𝒙𝒘𝒘0
𝒙𝒙𝒘𝒘1
𝒙𝒙𝒘𝒘2

𝑇𝑇

=
𝑥𝑥0𝑤𝑤0,0 + 𝑥𝑥1𝑤𝑤1,0 + 𝑥𝑥2𝑤𝑤2,0
𝑥𝑥0𝑤𝑤0,1 + 𝑥𝑥1𝑤𝑤1,1 + 𝑥𝑥2𝑤𝑤2,1
𝑥𝑥0𝑤𝑤0,2 + 𝑥𝑥1𝑤𝑤1,2 + 𝑥𝑥2𝑤𝑤2,2

𝑇𝑇

=
𝑠𝑠0
𝑠𝑠1
𝑠𝑠2

𝑇𝑇

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Logistic regression (2-D points, 3 classes)
Model parameters

𝑾𝑾 = 𝒘𝒘0 𝒘𝒘1 𝒘𝒘2 =
𝑤𝑤0,0 𝑤𝑤0,1 𝑤𝑤0,2
𝑤𝑤1,0 𝑤𝑤1,1 𝑤𝑤1,2
𝑤𝑤2,0 𝑤𝑤2,1 𝑤𝑤2,2

Decision function, predict 𝒙𝒙 as class 𝑗𝑗 if 𝑠𝑠𝑗𝑗 is the largest.

 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝑾𝑾 =
𝒙𝒙𝒘𝒘0
𝒙𝒙𝒘𝒘1
𝒙𝒙𝒘𝒘2

𝑇𝑇

=
𝑥𝑥0𝑤𝑤0,0 + 𝑥𝑥1𝑤𝑤1,0 + 𝑥𝑥2𝑤𝑤2,0
𝑥𝑥0𝑤𝑤0,1 + 𝑥𝑥1𝑤𝑤1,1 + 𝑥𝑥2𝑤𝑤2,1
𝑥𝑥0𝑤𝑤0,2 + 𝑥𝑥1𝑤𝑤1,2 + 𝑥𝑥2𝑤𝑤2,2

𝑇𝑇

=
𝑠𝑠0
𝑠𝑠1
𝑠𝑠2

𝑇𝑇

Output the distribution

𝑝𝑝 𝑦𝑦 𝒙𝒙;𝑾𝑾 = 1
𝑛𝑛𝑠𝑠0+𝑛𝑛𝑠𝑠1+𝑛𝑛𝑠𝑠2 𝑜𝑜𝑠𝑠0 𝑜𝑜𝑠𝑠1 𝑜𝑜𝑠𝑠2 ∝ 𝑜𝑜𝑠𝑠0 𝑜𝑜𝑠𝑠1 𝑜𝑜𝑠𝑠2

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Logistic regression (2-D points, 3 classes)
Decision function, predict 𝒙𝒙 as class 𝑗𝑗 if 𝑠𝑠𝑗𝑗 is the largest.

 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝑾𝑾 =
𝒙𝒙𝒘𝒘0
𝒙𝒙𝒘𝒘1
𝒙𝒙𝒘𝒘2

𝑇𝑇

=
𝑥𝑥0𝑤𝑤0,0 + 𝑥𝑥1𝑤𝑤1,0 + 𝑥𝑥2𝑤𝑤2,0
𝑥𝑥0𝑤𝑤0,1 + 𝑥𝑥1𝑤𝑤1,1 + 𝑥𝑥2𝑤𝑤2,1
𝑥𝑥0𝑤𝑤0,2 + 𝑥𝑥1𝑤𝑤1,2 + 𝑥𝑥2𝑤𝑤2,2

𝑇𝑇

=
𝑠𝑠0
𝑠𝑠1
𝑠𝑠2

𝑇𝑇

Output the distribution

𝑝𝑝 𝑦𝑦 𝒙𝒙;𝑾𝑾 = 1
𝑛𝑛𝑠𝑠0+𝑛𝑛𝑠𝑠1+𝑛𝑛𝑠𝑠2 𝑜𝑜𝑠𝑠0 𝑜𝑜𝑠𝑠1 𝑜𝑜𝑠𝑠2 ∝ 𝑜𝑜𝑠𝑠0 𝑜𝑜𝑠𝑠1 𝑜𝑜𝑠𝑠2

The log-loss

𝐿𝐿 𝒙𝒙𝑖𝑖 , 𝑦𝑦𝑖𝑖;𝑾𝑾 = − log 𝑝𝑝 𝑦𝑦 = 𝑦𝑦𝑖𝑖 𝒙𝒙 = 𝒙𝒙𝑖𝑖;𝑾𝑾 = − log
𝑜𝑜𝑠𝑠𝑦𝑦𝑖𝑖

𝑜𝑜𝑠𝑠0 + 𝑜𝑜𝑠𝑠1 + 𝑜𝑜𝑠𝑠2
= −𝑠𝑠𝑦𝑦𝑖𝑖 + log 𝑜𝑜𝑠𝑠0 + 𝑜𝑜𝑠𝑠1 + 𝑜𝑜𝑠𝑠2

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Log-loss for each data point & mean loss
𝑜𝑜 𝑦𝑦𝑖𝑖

𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝒙𝒙 = 𝒙𝒙𝒊𝒊,𝑾𝑾) log-loss𝑗𝑗 = 0 𝑗𝑗 = 1 𝑗𝑗 = 2
1 0 0.6 0.3 0.1
2 1 0.2 0.7 0.1
3 2 0.5 0.3 0.2
4 2 0.3 0.3 0.4

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Log-loss for each data point & mean loss

Mean loss (without regularization)

𝐿𝐿 =
1
4
�
𝑖𝑖=1

4

− log𝑝𝑝 𝑦𝑦 = 𝑦𝑦𝑖𝑖 𝒙𝒙 = 𝒙𝒙𝑖𝑖;𝑾𝑾

= −
1
4

log 0.6 + log 0.7 + log 0.2 + log 0.4

𝑜𝑜 𝑦𝑦𝑖𝑖
𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝒙𝒙 = 𝒙𝒙𝒊𝒊,𝑾𝑾) log-loss𝑗𝑗 = 0 𝑗𝑗 = 1 𝑗𝑗 = 2

1 0 0.6 0.3 0.1 −log 0.6
2 1 0.2 0.7 0.1 −log 0.7
3 2 0.5 0.3 0.2 −log 0.2
4 2 0.3 0.3 0.4 −log 0.4

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Log-loss for each data point & mean loss

Mean loss (without regularization)

↓ 𝐿𝐿 =
1
4
�
𝑖𝑖=1

4

− log𝑝𝑝 𝑦𝑦 = 𝑦𝑦𝑖𝑖 𝒙𝒙 = 𝒙𝒙𝑖𝑖;𝑾𝑾

= −
1
4

log 0.6 + log 0.7 + log 0.2 + log 0.4

𝑜𝑜 𝑦𝑦𝑖𝑖
𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝒙𝒙 = 𝒙𝒙𝒊𝒊,𝑾𝑾) ↓ log-loss𝑗𝑗 = 0 𝑗𝑗 = 1 𝑗𝑗 = 2

1 0 0.6 ↑ 0.3 0.1 −log 0.6
2 1 0.2 0.7 ↑ 0.1 −log 0.7
3 2 0.5 0.3 0.2 ↑ −log 0.2
4 2 0.3 0.3 0.4 ↑ −log 0.4

COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Outline
Review the lecture, background knowledge, etc.
Supervised learning as an optimization problem

Perceptron update rule & loss function

Logistic regression
 Predict function
 Log loss (a.k.a. cross entropy)

Notebook tasks
Task 1: Logistic regression

Task 2: Perceptron classifier

	Workshop Week 04
	About the Workshops
	About the Workshops
	Syllabus
	Outline
	Outline
	Supervised learning as an optimization problem
	Supervised learning as an optimization problem
	How to solve an optimization problem?
	Slide Number 10
	Gradient-based optimizers in
	Gradient-based optimizers in
	Outline
	Perceptron update rule (2-D points)
	Perceptron update rule (2-D points)
	Suppose 𝒙 1 is misclassified
	Suppose 𝒙 3 is misclassified
	A uniform update rule
	Perceptron update rule (2-D points)
	Perceptron update rule (2-D points)
	Perceptron update rule (2-D points)
	Define a loss function
	Gradient of the loss function
	The uniform update rule
	Perceptron update rule (2-D points)
	Perceptron stochastic gradient descent
	Outline
	Logistic regression (2-D points, 3 classes)
	Logistic regression (2-D points, 3 classes)
	Logistic regression (2-D points, 3 classes)
	Log-loss for each data point & mean loss
	Log-loss for each data point & mean loss
	Log-loss for each data point & mean loss
	Outline

