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About the Workshops
7 sessions in total
Tue 12:00-13:00 AH211

Tue 12:00-13:00 AH108 *

Tue 13:00-14:00 AH210

Tue 16:15-17:15 AH109

Tue 17:15-18:15 AH236 *

Tue 18:15-19:15 AH236 *

Fri 14:15-15:15 AH211
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About the Workshops
Homepage
https://trevorcohn.github.io/comp90051-2017/workshops

Solutions will be released on next Friday (a week later).

https://trevorcohn.github.io/comp90051-2017/workshops
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1 Introduction; 
Probability theory

Probabilistic models;
Parameter fitting

2 Linear regression;
Intro to regularization

Logistic regression;
Basis expansion

3 Optimization; Regularization Perceptron 
4 Backpropagation CNNs; Auto-encoders
5 Hard-margin SVMs Soft-margin SVMs
6 Additional topics Kernel methods
7 Unsupervised learning Unsupervised learning
8 Dimensionality reduction; 

Principal component analysis
Multidimensional scaling; 
Spectral clustering

9 Bayesian fundamentals Bayesian inference with 
conjugate priors

10 PGMs, fundamentals Conditional independence
11 PGMs, inference Belief propagation
12 Statistical inference; Apps Subject review

Syllabus
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Outline
Review the lecture, background knowledge, etc.
Supervised learning as an optimization problem

Perceptron update rule & loss function

Logistic regression
 Predict function
 Log loss (a.k.a. cross entropy)

Notebook tasks
Task 1: Logistic regression

Task 2: Perceptron classifier
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Supervised learning as an optimization problem
Dataset
Preprocessing / normalization / feature selection

Split into train*/test, where test served as the held-out set
 Split train* into train/validation (or 𝑘𝑘 folds train/validation, CV)

Model / Objective function
Parameters, solved either analytically or by an optimizer
 Solved on the training set (or training sets in 𝑘𝑘 folds, CV)

Hyper-parameters, e.g. regularization parameter
 Selected on the validation set (or validation sets in 𝑘𝑘 folds, CV)

Evaluation on the held-out set
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Supervised learning as an optimization problem
Dataset
Preprocessing / normalization / feature selection

Split into train*/test, where test served as the held-out set

Model / Objective function
Parameters, solved either analytically or by an optimizer
 Solved on the training set*

Evaluation on the held-out set
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How to solve an optimization problem?
Analytic solution  solve it by a formula
min

𝒘𝒘
𝑿𝑿𝑿𝑿 − 𝒚𝒚 2

2 + 𝜆𝜆 𝒘𝒘 2
2 , 𝜆𝜆 ≥ 0  𝒘𝒘∗ = 𝑿𝑿𝑇𝑇𝑿𝑿 + 𝜆𝜆𝑰𝑰 −1𝑿𝑿𝑇𝑇𝒚𝒚

Iterative methods  solve it by an optimization algorithm
To minimize an objective
 Coordinate descent
 Gradient-based optimization algorithms (optimizers)
 Simplest: gradient descent & stochastic gradient descent
 BFGS (in 4a_logistic_regression.ipynb)
 Many more in packages…

To maximize an objective
 Convert it to an equivalent minimization problem
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Linear regression has an analytic solution (with L2)

Perceptron has its own update rule
 can be interpreted as using stochastic gradient descent 

(with an appropriate loss function defined)

Gradient-based optimizers can be used for
Linear regression

Support vector machines

Logistic regression, neural networks

Deep neural networks are usually constructed and 
optimized using special packages…
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Gradient-based optimizers in 

https://www.tensorflow.org/api_guides/python/train

https://www.tensorflow.org/api_guides/python/train
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Gradient-based optimizers in 

http://pytorch.org/docs/master/optim.html#algorithms

https://www.tensorflow.org/api_guides/python/train
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Perceptron update rule (2-D points)
Data points
𝒙𝒙1 = 1 𝑥𝑥1,1 𝑥𝑥1,2 𝑦𝑦1 = +1, 𝒙𝒙2 = 1 𝑥𝑥2,1 𝑥𝑥2,2 𝑦𝑦2 = +1

𝒙𝒙3 = 1 𝑥𝑥3,1 𝑥𝑥3,2 𝑦𝑦3 = −1, 𝒙𝒙4 = 1 𝑥𝑥4,1 𝑥𝑥4,2 𝑦𝑦4 = −1

Model parameters

𝒘𝒘 =
𝑤𝑤0
𝑤𝑤1
𝑤𝑤2

Decision function
𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙 = 𝑥𝑥0𝑤𝑤0 + 𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2
Predict +1 if 𝑓𝑓 𝒙𝒙;𝒘𝒘 > 0 , predict −1 if 𝑓𝑓 𝒙𝒙;𝒘𝒘 < 0
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Perceptron update rule (2-D points)
 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
Call decision function 𝑠𝑠 = 𝑓𝑓 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝒙𝒙𝑖𝑖𝒘𝒘

Predict �𝑦𝑦𝑖𝑖 as +1 if 𝑠𝑠 > 0, as −1 if 𝑠𝑠 < 0

 If 𝑦𝑦𝑖𝑖 ≠ �𝑦𝑦𝑖𝑖

 If 𝑦𝑦𝑖𝑖 = +1 , 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙𝑖𝑖𝑇𝑇, or 
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑥𝑥𝑖𝑖,2

 If 𝑦𝑦𝑖𝑖 = −1 , 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙𝑖𝑖𝑇𝑇, or
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑥𝑥𝑖𝑖,2



COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Suppose 𝒙𝒙1 is misclassified
This means 𝑦𝑦1 = +1, �𝑦𝑦1 = −1, 𝑠𝑠 = 𝑓𝑓 𝒙𝒙1;𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒙𝒙1𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 < 0

Apply the update rule:
𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙1𝑇𝑇

How does 𝑠𝑠 change?
 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙1𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙1 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙1𝑇𝑇 = 𝒙𝒙1𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙1𝒙𝒙1𝑇𝑇 > 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜

We hope 𝑠𝑠 > 0 (because 𝑦𝑦1 = +1)

After updating 𝒘𝒘, 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 > 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 may still < 0

But it improves a bit (at least for 𝒙𝒙1)
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Suppose 𝒙𝒙3 is misclassified
This means 𝑦𝑦3 = −1, �𝑦𝑦3 = +1, 𝑠𝑠 = 𝑓𝑓 𝒙𝒙3;𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒙𝒙3𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 > 0

Apply the update rule:
𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙3𝑇𝑇

How does 𝑠𝑠 change?
 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙3𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒙𝒙3 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙3𝑇𝑇 = 𝒙𝒙3𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙3𝒙𝒙3𝑇𝑇 < 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜

We hope 𝑠𝑠 < 0 (because 𝑦𝑦3 = −1)

After updating 𝒘𝒘, 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 < 𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 may still > 0

But it improves a bit (at least for 𝒙𝒙3)
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A uniform update rule
For misclassified positive instance 𝒙𝒙, 𝑦𝑦 = +1, hope 𝑠𝑠 > 0

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝒙𝒙𝑇𝑇 to increase 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙

For misclassified negative instance 𝒙𝒙, 𝑦𝑦 = −1, hope 𝑠𝑠 < 0

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙𝑇𝑇 to decrease 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙

A uniform update rule:

For misclassified instance 𝒙𝒙, 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑇𝑇 so that
 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙 is increased if 𝑦𝑦 = +1

 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙 is decreased if 𝑦𝑦 = −1



COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Perceptron update rule (2-D points)
 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
Call decision function 𝑠𝑠 = 𝑓𝑓 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝒙𝒙𝑖𝑖𝒘𝒘

Predict �𝑦𝑦𝑖𝑖 as +1 if 𝑠𝑠 > 0, as −1 if 𝑠𝑠 < 0

 If 𝑦𝑦𝑖𝑖 ≠ �𝑦𝑦𝑖𝑖

 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑖𝑖𝑇𝑇, or 
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,2
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Perceptron update rule (2-D points)
 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
Call decision function 𝑠𝑠 = 𝑓𝑓 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝒙𝒙𝑖𝑖𝒘𝒘

Predict �𝑦𝑦𝑖𝑖 as +1 if 𝑠𝑠 > 0, as −1 if 𝑠𝑠 < 0

 If 𝑦𝑦𝑖𝑖 ≠ �𝑦𝑦𝑖𝑖  𝑦𝑦𝑖𝑖, �𝑦𝑦𝑖𝑖 = −1, +1 or +1,−1 𝑦𝑦𝑖𝑖 �𝑦𝑦𝑖𝑖 < 0 𝑦𝑦𝑖𝑖𝑠𝑠 < 0

 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑖𝑖𝑇𝑇, or 
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,2
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Perceptron update rule (2-D points)
 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
 If misclassified  𝑦𝑦𝑦𝑦 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝑦𝑦𝒙𝒙𝑖𝑖𝒘𝒘 < 0

 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑖𝑖𝑇𝑇, or 
𝑤𝑤0𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤0𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,0
𝑤𝑤1𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤1𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,1
𝑤𝑤2𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑤𝑤2𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝑥𝑥𝑖𝑖,2

The update rule for implementation

We can further define a loss function, but only for 
theoretic analysis.
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Define a loss function
For misclassified instance 𝒙𝒙, 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑇𝑇 so that
 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙 is increased if 𝑦𝑦 = +1

 𝑠𝑠 = 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙 is decreased if 𝑦𝑦 = −1

Loss functions should be minimized

Define 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑦𝑦(𝒙𝒙;𝒘𝒘) for misclassified 𝒙𝒙
−𝑦𝑦𝑦𝑦 𝒙𝒙;𝒘𝒘 = −𝒙𝒙𝒙𝒙 is decreased if 𝑦𝑦 = +1

−𝑦𝑦𝑦𝑦 𝒙𝒙;𝒘𝒘 = +𝒙𝒙𝒙𝒙 is decreased if 𝑦𝑦 = −1

So 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑦𝑦(𝒙𝒙;𝒘𝒘) decreases after updating 𝒘𝒘



COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Gradient of the loss function
𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑦𝑦 𝒙𝒙;𝒘𝒘 = −𝑦𝑦(𝑥𝑥0𝑤𝑤0 + 𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤0

= −𝑦𝑦𝑥𝑥0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

= −𝑦𝑦𝑥𝑥1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤2

= −𝑦𝑦𝑥𝑥2

So

𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

=

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤0
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤1
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤2

= −𝑦𝑦
𝑥𝑥0
𝑥𝑥1
𝑥𝑥2

= −𝑦𝑦𝒙𝒙𝑇𝑇



COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

The uniform update rule
For misclassified instance 𝒙𝒙, 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑇𝑇

For misclassified instance 𝒙𝒙, the loss function is defined 
as 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑦𝑦 𝒙𝒙;𝒘𝒘

𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

= −𝑦𝑦𝒙𝒙𝑇𝑇

So the update rule can be written as

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑦𝑦𝒙𝒙𝑇𝑇 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘
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Perceptron update rule (2-D points)
Define 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = −𝑦𝑦𝑦𝑦 𝒙𝒙;𝒘𝒘 for misclassified instances

 Iterate over all the points

Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
 If misclassified  𝑦𝑦𝑦𝑦 𝒙𝒙𝑖𝑖;𝒘𝒘 = 𝑦𝑦𝒙𝒙𝑖𝑖𝒘𝒘 < 0 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 > 0

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘
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Perceptron  stochastic gradient descent
Define

𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 = �−𝑦𝑦𝑦𝑦 𝒙𝒙;𝒘𝒘 if 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 > 0 misclassified
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Then
𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

= �−𝑦𝑦𝒙𝒙
𝑇𝑇 if 𝐿𝐿 𝑓𝑓 𝒙𝒙;𝒘𝒘 , 𝑦𝑦 > 0 misclassified

𝟎𝟎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Iterate over all the points
Current point is 𝒙𝒙𝑖𝑖, and its label is 𝑦𝑦𝑖𝑖
Apply the update rule

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝒘𝒘𝑜𝑜𝑜𝑜𝑜𝑜 −
𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘



COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Outline
Review the lecture, background knowledge, etc.
Supervised learning as an optimization problem

Perceptron update rule & loss function

Logistic regression
 Predict function
 Log loss (a.k.a. cross entropy)

Notebook tasks
Task 1: Logistic regression

Task 2: Perceptron classifier
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Logistic regression (2-D points, 3 classes)
Data points
𝒙𝒙1 = 1 𝑥𝑥1,1 𝑥𝑥1,2 𝑦𝑦1 = 0, 𝒙𝒙2 = 1 𝑥𝑥2,1 𝑥𝑥2,2 𝑦𝑦2 = 1

𝒙𝒙3 = 1 𝑥𝑥3,1 𝑥𝑥3,2 𝑦𝑦3 = 2, 𝒙𝒙4 = 1 𝑥𝑥4,1 𝑥𝑥4,2 𝑦𝑦4 = 2

Model parameters

𝑾𝑾 = 𝒘𝒘0 𝒘𝒘1 𝒘𝒘2 =
𝑤𝑤0,0 𝑤𝑤0,1 𝑤𝑤0,2
𝑤𝑤1,0 𝑤𝑤1,1 𝑤𝑤1,2
𝑤𝑤2,0 𝑤𝑤2,1 𝑤𝑤2,2

Decision function, predict 𝒙𝒙 as class 𝑗𝑗 if 𝑠𝑠𝑗𝑗 is the largest.

 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝑾𝑾 =
𝒙𝒙𝒙𝒙0
𝒙𝒙𝒙𝒙1
𝒙𝒙𝒙𝒙2

𝑇𝑇

=
𝑥𝑥0𝑤𝑤0,0 + 𝑥𝑥1𝑤𝑤1,0 + 𝑥𝑥2𝑤𝑤2,0
𝑥𝑥0𝑤𝑤0,1 + 𝑥𝑥1𝑤𝑤1,1 + 𝑥𝑥2𝑤𝑤2,1
𝑥𝑥0𝑤𝑤0,2 + 𝑥𝑥1𝑤𝑤1,2 + 𝑥𝑥2𝑤𝑤2,2

𝑇𝑇

=
𝑠𝑠0
𝑠𝑠1
𝑠𝑠2

𝑇𝑇
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Logistic regression (2-D points, 3 classes)
Model parameters

𝑾𝑾 = 𝒘𝒘0 𝒘𝒘1 𝒘𝒘2 =
𝑤𝑤0,0 𝑤𝑤0,1 𝑤𝑤0,2
𝑤𝑤1,0 𝑤𝑤1,1 𝑤𝑤1,2
𝑤𝑤2,0 𝑤𝑤2,1 𝑤𝑤2,2

Decision function, predict 𝒙𝒙 as class 𝑗𝑗 if 𝑠𝑠𝑗𝑗 is the largest.

 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙 =
𝒙𝒙𝒙𝒙0
𝒙𝒙𝒙𝒙1
𝒙𝒙𝒙𝒙2

𝑇𝑇

=
𝑥𝑥0𝑤𝑤0,0 + 𝑥𝑥1𝑤𝑤1,0 + 𝑥𝑥2𝑤𝑤2,0
𝑥𝑥0𝑤𝑤0,1 + 𝑥𝑥1𝑤𝑤1,1 + 𝑥𝑥2𝑤𝑤2,1
𝑥𝑥0𝑤𝑤0,2 + 𝑥𝑥1𝑤𝑤1,2 + 𝑥𝑥2𝑤𝑤2,2

𝑇𝑇

=
𝑠𝑠0
𝑠𝑠1
𝑠𝑠2

𝑇𝑇

Output the distribution

𝑝𝑝 𝑦𝑦 𝒙𝒙;𝑾𝑾 = 1
𝑒𝑒𝑠𝑠0+𝑒𝑒𝑠𝑠1+𝑒𝑒𝑠𝑠2 𝑒𝑒𝑠𝑠0 𝑒𝑒𝑠𝑠1 𝑒𝑒𝑠𝑠2 ∝ 𝑒𝑒𝑠𝑠0 𝑒𝑒𝑠𝑠1 𝑒𝑒𝑠𝑠2
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Logistic regression (2-D points, 3 classes)
Decision function, predict 𝒙𝒙 as class 𝑗𝑗 if 𝑠𝑠𝑗𝑗 is the largest.

 𝑓𝑓 𝒙𝒙;𝒘𝒘 = 𝒙𝒙𝒙𝒙 =
𝒙𝒙𝒙𝒙0
𝒙𝒙𝒙𝒙1
𝒙𝒙𝒙𝒙2

𝑇𝑇

=
𝑥𝑥0𝑤𝑤0,0 + 𝑥𝑥1𝑤𝑤1,0 + 𝑥𝑥2𝑤𝑤2,0
𝑥𝑥0𝑤𝑤0,1 + 𝑥𝑥1𝑤𝑤1,1 + 𝑥𝑥2𝑤𝑤2,1
𝑥𝑥0𝑤𝑤0,2 + 𝑥𝑥1𝑤𝑤1,2 + 𝑥𝑥2𝑤𝑤2,2

𝑇𝑇

=
𝑠𝑠0
𝑠𝑠1
𝑠𝑠2

𝑇𝑇

Output the distribution

𝑝𝑝 𝑦𝑦 𝒙𝒙;𝑾𝑾 = 1
𝑒𝑒𝑠𝑠0+𝑒𝑒𝑠𝑠1+𝑒𝑒𝑠𝑠2 𝑒𝑒𝑠𝑠0 𝑒𝑒𝑠𝑠1 𝑒𝑒𝑠𝑠2 ∝ 𝑒𝑒𝑠𝑠0 𝑒𝑒𝑠𝑠1 𝑒𝑒𝑠𝑠2

The log-loss

𝐿𝐿 𝒙𝒙𝑖𝑖, 𝑦𝑦𝑖𝑖;𝑾𝑾 = − log 𝑝𝑝 𝑦𝑦 = 𝑦𝑦𝑖𝑖 𝒙𝒙 = 𝒙𝒙𝑖𝑖;𝑾𝑾 = − log
𝑒𝑒𝑠𝑠𝑦𝑦𝑖𝑖

𝑒𝑒𝑠𝑠0 + 𝑒𝑒𝑠𝑠1 + 𝑒𝑒𝑠𝑠2
= −𝑠𝑠𝑦𝑦𝑖𝑖 + log 𝑒𝑒𝑠𝑠0 + 𝑒𝑒𝑠𝑠1 + 𝑒𝑒𝑠𝑠2
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Log-loss for each data point & mean loss
𝑖𝑖 𝑦𝑦𝑖𝑖

𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝒙𝒙 = 𝒙𝒙𝒊𝒊,𝑾𝑾) log-loss𝑗𝑗 = 0 𝑗𝑗 = 1 𝑗𝑗 = 2
1 0 0.6 0.3 0.1
2 1 0.2 0.7 0.1
3 2 0.5 0.3 0.2
4 2 0.3 0.3 0.4
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Log-loss for each data point & mean loss

Mean loss (without regularization)

𝐿𝐿 =
1
4
�
𝑖𝑖=1

4

− log 𝑝𝑝 𝑦𝑦 = 𝑦𝑦𝑖𝑖 𝒙𝒙 = 𝒙𝒙𝑖𝑖;𝑾𝑾

= −
1
4

log 0.6 + log 0.7 + log 0.2 + log 0.4

𝑖𝑖 𝑦𝑦𝑖𝑖
𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝒙𝒙 = 𝒙𝒙𝒊𝒊,𝑾𝑾) log-loss𝑗𝑗 = 0 𝑗𝑗 = 1 𝑗𝑗 = 2

1 0 0.6 0.3 0.1 −log 0.6
2 1 0.2 0.7 0.1 −log 0.7
3 2 0.5 0.3 0.2 −log 0.2
4 2 0.3 0.3 0.4 −log 0.4
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Log-loss for each data point & mean loss

Mean loss (without regularization)

↓ 𝐿𝐿 =
1
4
�
𝑖𝑖=1

4

− log 𝑝𝑝 𝑦𝑦 = 𝑦𝑦𝑖𝑖 𝒙𝒙 = 𝒙𝒙𝑖𝑖;𝑾𝑾

= −
1
4

log 0.6 + log 0.7 + log 0.2 + log 0.4

𝑖𝑖 𝑦𝑦𝑖𝑖
𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝒙𝒙 = 𝒙𝒙𝒊𝒊,𝑾𝑾) ↓ log-loss𝑗𝑗 = 0 𝑗𝑗 = 1 𝑗𝑗 = 2

1 0 0.6 ↑ 0.3 0.1 −log 0.6
2 1 0.2 0.7 ↑ 0.1 −log 0.7
3 2 0.5 0.3 0.2 ↑ −log 0.2
4 2 0.3 0.3 0.4 ↑ −log 0.4
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Outline
Review the lecture, background knowledge, etc.
Supervised learning as an optimization problem

Perceptron update rule & loss function

Logistic regression
 Predict function
 Log loss (a.k.a. cross entropy)

Notebook tasks
Task 1: Logistic regression

Task 2: Perceptron classifier
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