COMP90051

Workshop Week 03

About the Workshops

- **7** sessions in total
 - **Tue 12:00-13:00 AH211**
 - **Tue 12:00-13:00 AH108 ***
 - **Tue 13:00-14:00 AH210**
 - **Tue 16:15-17:15** AH109
 - **Tue 17:15-18:15 AH236 ***
 - **Tue 18:15-19:15** AH236 *
 - **Fri** 14:15-15:15 AH211

About the Workshops

Homepage

https://trevorcohn.github.io/comp90051-2017/workshops

□ Solutions have been released.

Review the lecture, background knowledge, etc.

- □ Model evaluation, selection, optimization
- Regularizor as a prior

Jupyter Usage

Notebook tasks

- □ Task 1: Linear regression
- □ Task 2: Polynominal regression

Review the lecture, background knowledge, etc.

- □ Model evaluation, selection, optimization
- Regularizor as a prior

Jupyter Usage

Notebook tasks

- □ Task 1: Linear regression
- □ Task 2: Polynominal regression

Model Evaluation

What could the output be?

Regression

- A value
- A distribution

Classification

- 🗖 A label
- A value (binary) / values (multi-class)
- \Box A distribution

Types of models

http://scikit-learn.org/0.17/auto_examples/gaussian_process/plot_gp_regression.html

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat

https://www.tensorflow.org/tutorials/image_recognition

sklearn.linear_model.LogisticRegression

Methods

decision function (X)	Predict confidence scores for samples.
	Convert coefficient matrix to dence array format
density ()	Convent coefficient matrix to dense anay format.
<pre>fit (X, y[, sample_weight])</pre>	Fit the model according to the given training data.
<pre>fit_transform (X[, y])</pre>	Fit to data, then transform it.
<pre>get_params ([deep])</pre>	Get parameters for this estimator.
predict (X)	Predict class labels for samples in X.
<pre>predict_log_proba (X)</pre>	Log of probability estimates.
predict_proba (X)	Probability estimates.
<pre>score (X, y[, sample_weight])</pre>	Returns the mean accuracy on the given test data and labels.

 $\underline{http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html}$

Model Evaluation

Regression

- RMSE, MAE, etc.
- Classification
 - Accuracy, precision, recall, f-score, etc.
 - Log-loss (a.k.a. cross entropy), likelihood, etc.

Model Selection

Model Optimization

The evaluation metric & the objective function may differ
Could be entirely different

□ Or additional terms in the objective function, e.g. L1/L2

More on the objective function

Aximize the likelihood (or log likelihood)

 $\max_{\boldsymbol{w}} p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) \iff \max_{\boldsymbol{w}} \prod p(y_i | \boldsymbol{x}_i, \boldsymbol{w}) \iff \max_{\boldsymbol{w}} \sum \log p(y_i | \boldsymbol{x}_i, \boldsymbol{w})$

□ Maximize the posterior (a.k.a. max a posteriori, MAP)

 $\max_{w} p(w|X, y) \rightarrow \max_{w} p(y|X, w) p(w) \text{ (assume } w \perp X)$

Minimize the loss function (+regularization)

 $\min_{w} \sum L(f(\boldsymbol{x}_i; \boldsymbol{w}), y_i) \quad \text{or} \quad \min_{w} \sum L(f(\boldsymbol{x}_i; \boldsymbol{w}), y_i) + \lambda R(\boldsymbol{w})$ $\square \text{ Minimize the log-loss (a.k.a. cross entropy) (+L1/L2)}$

□ Minimize the hinge-loss (+L2)

□ Minimize the mean squared error (+L1/L2) COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

More on the objective function

□ Maximize the likelihood (or log likelihood)

 $\max_{w} p(\mathbf{y}|\mathbf{X}, \mathbf{w}) \Leftrightarrow \max_{w} \prod_{w} p(\mathbf{y}_{i}|\mathbf{x}_{i}, \mathbf{w}) \Leftrightarrow \max_{w} \sum_{w} \log p(\mathbf{y}_{i}|\mathbf{x}_{i}, \mathbf{w})$ □ Maximize the posterior (a.k.a. max a posteriori, MAP) $\max_{w} p(w | X, y) \rightarrow \max_{w} p(y | X, w) p(w) \xrightarrow{(assume w \perp X)}$ $\Box \text{ Minimize the loss function (+regularization)}$ $\min_{\boldsymbol{w}} \sum L(f(\boldsymbol{x}_i; \boldsymbol{w}), y_i) \quad \text{or} \quad \min_{\boldsymbol{w}} \sum L(f(\boldsymbol{x}_i; \boldsymbol{w}), y_i) + \lambda R(\boldsymbol{w})$ □ Minimize the log-loss (a.k.a. cross entropy) (+L1/L2) □ Minimize the hinge-loss (+L2) □ Minimize the mean squared error (+L1/L2)

Review the lecture, background knowledge, etc.

- □ Model evaluation, selection, optimization
- Regularizor as a prior

Jupyter Usage

Notebook tasks

- □ Task 1: Linear regression
- □ Task 2: Polynominal regression

Regulariser as a prior

- Without regularisation model parameters are found based entirely on the information contained in the training set *X*
- Regularisation essentially means introducing additional information
- Recall our probabilistic model $\mathcal{Y} = \mathbf{x'}\mathbf{w} + \varepsilon$ * Here \mathcal{Y} and ε are random variables, where ε denotes noise
- Now suppose that w is also a random variable (denoted as \mathcal{W}) with a normal prior distribution $\mathcal{W} \sim \mathcal{N}(0, \lambda^2)$

Computing posterior using Bayes rule

• The prior is then used to compute the posterior

- Instead of maximum likelihood (MLE), take maximum a posteriori estimate (MAP)
- Apply log trick, so that log(posterior) = log(likelihood) + log(prior) - log(marg)
- Arrive at the problem of minimising $\| \mathbf{y} \mathbf{X} \mathbf{w} \|_2^2 + \lambda \| \mathbf{w} \|_2^2$

this term doesn't affect optimisation

Review the lecture, background knowledge, etc.

- □ Model evaluation, selection, optimization
- Regularizor as a prior

Jupyter Usage

Notebook tasks

- □ Task 1: Linear regression
- □ Task 2: Polynominal regression

Keyboard Shortcuts

Jupyter 3a_linear_regression-answers (autosaved)

File Edit View Insert Cell Kernel	Help	
E + ≫ 2 E ↑ ↓ N E C Marke	User Interface Tour	
	Keyboard Shortcuts	
	Edit Keyboar Opens a dialo	og which shows all keyboard shortcuts
Worksheet 3a: Line	Notebook Help Markdown	2 2
The aim of this workshop is to get you using iterative updates (coordinate de	Python IPvthon	els in python. For reg gebra. Finally we will
Firstly we will import the relevant libra windows.	NumPy SciPy	nsuring our plots app ☑

Review the lecture, background knowledge, etc.

- □ Model evaluation, selection, optimization
- Regularizor as a prior

Jupyter Usage

Notebook tasks

- □ Task 1: Linear regression
- □ Task 2: Polynomial regression

Linear regression

$$\Box x_1 \to y_1, x_2 \to y_2, x_3 \to y_3, x_4 \to y_4$$

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \hat{y}_4 \end{bmatrix}$$

□ Minimize the objective function

$$\frac{1}{4}\sum_{i=1}^{4}(\hat{y}_{i}-y_{i})^{2} \text{ or } \frac{1}{4}\sum_{i=1}^{4}(\hat{y}_{i}-y_{i})^{2}+\lambda\sum_{j=0}^{1}w_{j}^{2}$$

Analytic solution & iterative solution

Multivariate linear regression (2-D points)

$$\begin{array}{c} \Box \left(x_{1,1}, x_{1,2} \right) \to y_1, \left(x_{2,1}, x_{2,2} \right) \to y_2 \\ \Box \left(x_{3,1}, x_{3,2} \right) \to y_3, \left(x_{4,1}, x_{4,2} \right) \to y_4 \\ \Box \begin{bmatrix} 1 & x_{1,1} & x_{1,2} \\ 1 & x_{2,1} & x_{2,2} \\ 1 & x_{3,1} & x_{3,2} \\ 1 & x_{4,1} & x_{4,2} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \hat{y}_4 \end{bmatrix}$$

□ Minimize the objective function

$$\frac{1}{4}\sum_{i=1}^{4}(\hat{y}_{i}-y_{i})^{2} \text{ or } \frac{1}{4}\sum_{i=1}^{4}(\hat{y}_{i}-y_{i})^{2}+\lambda\sum_{j=0}^{2}w_{j}^{2}$$

Analytic solution & iterative solution

Polynomial regression (Quadratic)

 $\Box x_1 \to y_1, x_2 \to y_2, x_3 \to y_3, x_4 \to y_4$

$$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \hat{y}_4 \end{bmatrix}$$

□ Minimize the objective function

$$\frac{1}{4}\sum_{i=1}^{4}(\hat{y}_{i}-y_{i})^{2} \text{ or } \frac{1}{4}\sum_{i=1}^{4}(\hat{y}_{i}-y_{i})^{2}+\lambda\sum_{j=0}^{2}w_{j}^{2}$$

Analytic solution & iterative solution