COMP90051

Workshop Week 02

About the Workshops

- **7** sessions in total
 - **Tue 12:00-13:00 AH211**
 - **Tue 12:00-13:00 AH108 ***
 - **Tue 13:00-14:00 AH210**
 - **Tue 16:15-17:15** AH109
 - **Tue 17:15-18:15 AH236 ***
 - **Tue 18:15-19:15** AH236 *
 - **Fri** 14:15-15:15 AH211

About Me (Yuan Li)

2008-2012, THU, EE

2013-2014, UoM, Master of IT

□ 2015-present, UoM, PhD CS

Working in the NLP group

□ Supervisors: Trevor Cohn, Ben Rubinstein

Contact: <u>yuanl4@student.unimelb.edu.au</u>

About the Workshops

Two parts

Review the lecture, background knowledge, etc.

Run the ipython notebook files

Released on subject homepage

https://trevorcohn.github.io/comp90051-2017/workshops

Illustrate the ideas. Some "IMPLEMENT ME" to work on.

```
def neighbours(x, train_x, k):
    # IMPLEMENT ME to return the indices of
    # the k closest elements to x in train_x
```

Outline

Review the lecture, background knowledge, etc.

• Overfitting

□ Model evaluation (Metrics, Train/Test split)

Setup the environment (to run the notebook)
 We release workshop materials in this format

Run the notebook files

□ Task 1: Overview of the k-NN classifier, overfitting

Task 2: Evaluation the classifier (metrics, train/test split) COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Outline

Review the lecture, background knowledge, etc.

• Overfitting

□ Model evaluation (Metrics, Train/Test split)

Setup the environment (to run the notebook)
 We release workshop materials in this format

Run the notebook files

□ Task 1: Overview of the k-NN classifier, overfitting

Task 2: Evaluation the classifier (metrics, train/test split) COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Overfitting

□ When do we realize overfitting?

- UWhat kind of model is easy to overfit?
- □ How to reduce overfitting?

Overfitting

□ When do we realize overfitting?

□ What kind of model is easy to overfit?

□ How to reduce overfitting?

Analyze overfitting using plots

□ Train/Test plot

Bias/Variance plot

Common beliefs on overfitting

□ Ways to reduce overfitting

Overfitting – Train/Test plot

□ Y-axis is error/loss, etc. The lower the better.

X-axis could be

A parameter in the model

□ The number of iterations in the training algorithm.

https://en.wikipedia.org/wiki/Overfitting

Overfitting – Bias/Variance plot

□ Y-axis is the error. The lower the better.

□ X-axis is the model complexity.

http://scott.fortmann-roe.com/docs/BiasVariance.html

Comparison

□ The train/test plot is more practical.

□ The bias/variance plot is more theoretical.

□ The total error is in theory.

□ The error on the test set is an approximation to it.

Comparison

The common thing is

 \Box model complexity \uparrow , total error/test error first \downarrow , then \uparrow

Beliefs on Overfitting

□ Note: beliefs are not always correct.

Beliefs on the smoothness

https://www.nature.com/nmeth/journal/v13/n9/fig_tab/nmeth.3968_F1.html COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Beliefs on Overfitting

□ Note: beliefs are not always correct.

- Beliefs on the model complexity
 - Simpler model has lower risk of overfitting.

Beliefs on the number of parametersShould not exceed the number of examples.

- Beliefs on the sparseness of learned parametersThe more sparse, the less likely to overfit.
- **Lead to L1/L2 regularization.** COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Reduce Overfitting

- ☐ More training data.
- Limit the model to have the right complexity.
 - Limit the number of parameters
 - Regularizations
- Average many different models.
 - □ For example, random forest
- Bayesian approaches.
 - Add prior belief to the model

Outline

Review the lecture, background knowledge, etc.

• Overfitting

□ Model evaluation (Metrics, Train/Test split)

Setup the environment (to run the notebook)
 We release workshop materials in this format

Run the notebook files

□ Task 1: Overview of the k-NN classifier, overfitting

Task 2: Evaluation the classifier (metrics, train/test split) COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

Evaluation Metrics

Given two arrays:

$$\Box$$
 y_pred = [0, 1, 0, 1, 0, 0, 0]

Result in a table

Truth	Prediction	Count	Name
1	1		
1	0		
0	1		
0	0		

Evaluation Metrics

Given two arrays:

$$\Box$$
 y_pred = [0, 1, 0, 1, 0, 0, 0]

Result in a table

Truth	Prediction	Count	Name
1	1	1	
1	0	2	
0	1	1	
0	0	3	

Evaluation Metrics

$$\Box$$
 Accuracy = (1+3) / (1+2+1+3) = 4/7

 $\Box Precision = TP/(TP+FP) = 1/(1+1) = 1/2$

 \Box Recall = TP/(TP+FN) = 1/(1+2) = 1/3, is also called TPR

 \Box FPR = FP/(FP+TN) = 1/(1+3) = 1/4

Truth	Prediction	Count	Name
1	1	1	TP
1	0	2	FN
0	1	1	FP
0	0	3	TN

True/False Positive/Negative

□ Positive/Negative -> the prediction is positive/negative

□ True/False -> the prediction is correct/wrong

□ False Positive -> the prediction is positive but is wrong

Summary

<u>https://en.wikipedia.org/wiki/Confusion_matrix</u>

		True condition		
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{ Condition positive}} = \frac{\sum \text{ Condition positive}}{\sum \text{ Total population}}$
Predicted condition	Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive
	Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	

Train/Test Split

□ If there is no test set, we may create one.

To evaluate our model, or diagnose overfitting, etc.

By splitting the whole dataset into train and test.

Three ways

- Split once at the beginning.
 - □ The test set is also called development set or validation set
- □ Split k times to create k-fold -> cross validation
- Leave one out -> an extreme case
 - \Box where k = N, N is the number of examples in total

Outline

Review the lecture, background knowledge, etc.

• Overfitting

□ Model evaluation (Metrics, Train/Test split)

Setup the environment (to run the notebook)
 We release workshop materials in this format

Run the notebook files

□ Task 1: Overview of the k-NN classifier, overfitting

Task 2: Evaluation the classifier (metrics, train/test split) COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE

To launch jupyter on the lab computer.

Open a command line prompt

"cd" to your working directory

Type "jupyter notebook"

jupyter is installed, but is not in PATH

Windows users (now in C:\Users\yuanl4\Downloads)
C:\Users\yuanl4\Downloads>where python
C:\Program Files\Python35\python.exe

C:\Users\yuanl4\Downloads> "<mark>C:\Program Files\Python35\Scripts\</mark>jupyter.exe" notebook

Linux/Mac users (now in ~/comp90051-2017)
yuan14@slug:~/comp90051-2017\$ which python3
/home/yuan14/python35env/bin/python3

yuanl4@slug:~/comp90051-2017\$ <mark>/home/yuanl4/python35env/bin/</mark>jupyter notebook

jupyter is running, but no browser opened

C:\Users\yuanl4\Downloads>jupyter notebook

[I 15:50:13.236 NotebookApp] Serving notebooks
from local directory: C:\Users\yuanl4\Downloads

[I 15:50:13.236 NotebookApp] 0 active kernels

[I 15:50:13.236 NotebookApp] The Jupyter Notebook
is running at:

http://localhost:8888/?token=8a45ae92166791fbe4868 f6575ca958bf6ff3c300df3ab1c

[I 15:50:13.236 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

• • •

Outline

Review the lecture, background knowledge, etc.

• Overfitting

□ Model evaluation (Metrics, Train/Test split)

Setup the environment (to run the notebook)
 We release workshop materials in this format

Run the notebook files

□ Task 1: Overview of the k-NN classifier, overfitting

Task 2: Evaluation the classifier (metrics, train/test split) COPYRIGHT 2017, THE UNIVERSITY OF MELBOURNE